线性DP_数字三角形

线性DP数字三角形

题目

在这里插入图片描述

讲解

和之前的DP解法差不多,先进行分析

--状态表示 是个二维的所以为fi, j],该集合是从顶部到[i, j]的最大路径
--集合的属性为 MAX

--状态计算 由于该层的该点从从上一层的临近的两个点推过来的,所以只要找到其状态转移方程就行

代码

#include <bits/stdc++.h>

using namespace std;

const int INF = -0x3f3f3f;

int n;

int main()
{
    cin >> n;

    int f[n+1][n+1];
    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= i; j ++)
        {
            cin >> f[i][j];
        }

    for (int i = n - 1; i >= 1; i --)
        for (int j = i; j >= 1; j --)
        {
            f[i][j] = max(f[i][j] + f[i + 1][j], f[i][j] + f[i + 1][j + 1]);
        }
    
    cout << f[1][1] << endl;

    system("pause");

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值