递归与迭代

1、递归

当函数用自身来定义时就称为是递归(recursive)的。

递归必须满足四个基本法则:

(1)、基本情形:必须给出基准情况,不用递归就能求出,用于终止递归运算;

(2)、不断推进:对于那些要被递归求解的情形,递归调用必须能够朝着一个基准情形推进;

(3)、设计法则:假设所有的递归调用都能运行;

(4)、合成效益法则:在求解一个问题的同一个实例时,切勿在不同的递归调用中做重复性的工作。


2、迭代

迭代就是利用变量的原值推算出变量的一个新值。

若递归是自己调用自己的话,迭代就是自己不停的调用别人。


3、实例一

求解:阶乘n!之和,即:


示例代码如下:

#include<iostream>
using namespace std;

float fun(int m)
{
	
	float mm=1;
	for(int i=1;i<=m;i++)	//迭代
	{
		mm *= i;
	}
	if(m==0)
		return 1;	//base case(基准情况)
	else
		return fun(m-1)+(1/mm);	//递归
	
}

 int main()
 {
	int n;
	cout<<"请输入n:";
	scanf("%d",&n);
	cout<<fun(n)<<endl;;
	
 }


4、实例二

求解:有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法?

解析:如果只有一级台阶,n=1,很明显只有一种跳法;如果有两级台阶,n=2,则有两种跳法,一种是跳两下1级,一种是直接跳两级;

那么我们来看看如果有n层台阶,可以怎么跳:

n层台阶可以是这么够成的:

(1)、第n层台阶是从第n-1层跳1级上来的

(2)、第n层台阶是从第n-2层直接跳2级上来的

所以可以得到n层的跳法总数是F(n)=F(n-1)+F(n-2)

#include <iostream>
using namespace std;

int Solve(int n)
{
	if(n==1)
		return 1;
	if(n==2)
		return 2;
	return Solve(n-1)+Solve(n-2);
}

int main()
{
	int n;
	printf("请输入台阶总数n:");
	scanf("%d",&n);
	cout<<"共有"<<Solve(n)<<"种跳法"<<endl;
	return 0;
}

5、实例三

求解:用递归的方法判断一个数组是否为递增数组

基本思想:记录当前最大的,并且判断当前的是否比这个还大,大则继续,否则返回false结束。

#include<iostream>
using namespace std;

bool fun(int a[], int n)
{
	if(n==1)
		return true;
	if(n==2)
		return a[n-1]>a[n-2];

	return fun(a,n-1) && ( a[n-1]>a[n-2] );
}

int main()
{
	int a[]={0,1,2,3,4,5,6,7,8,9};
	int n=sizeof(a)/sizeof(int);
	cout<<fun(a,n)<<endl;
}



《算法赏析》课程介绍 “软件 = 算法 + 数据结构”,算法是软件的灵魂。在信息时代,计算思维是分析复杂工程问题的重要思维方式,计算机则是求解问题的重要工具。本课程以计算机经典问题求解为导向,通用算法思维和自动编程流程图培养为目标,引入经典算法,精心安排课程的理论教学和编程实践。本课程学习将有助于学员提高计算思维能力及算法思维的能力。 本课程主要讲授计算机问题求解的经典算法设计方法和算法复杂度分析方法,主要内容包括计算机概述、计算机系统的组成、信息化及指标体系、操作系统、程序设计语言、算法简介、数的表示及存储、数据结构简介及顺序结构和选择结构、循环结构、循环的嵌套、算法复杂度分析,枚举算法,递归与分治策略,递归迭代的思想、求最大值最小值、线性查找、二分查找与冒泡排序以及选择与交换排序、插入和希尔排序。本课程除了强调经典的算法理论和模型,亦兼顾编程实践能力。力图使得学员面对复杂问题时,既能“想到”还能“做到”。 授课目标 培养算法思维,掌握枚举算法、分治策略、递归迭代、选择与交换排序等经典算法模型; 培养实践能力,掌握在存储空间和时间开销受限情况下的程序设计方法; 培养理论思维,掌握复杂问题的算法设计与分析方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值