Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
..#.
.#..
#…
-1 -1
Sample Output
2
1
简单的全部遍历即可,该列有棋子就标记,直至所有棋子全部放下为止。
#include<stdio.h>
#include<stdlib.h>
#define MAX 15
int count = 0;
int flag[MAX];
char map[MAX][MAX];
int n,k;
void dfs(int cur,int num)
{
if(num == k){ /** 如果num==k 也就是,当前方案可行*/
count++;
return;
}
for(int i = cur; i<n; i++){
for(int j = 0; j<n; j++){
//遍历深搜每一个
if(map[i][j]!='.' && flag[j] == 0){
//跳过不在棋盘上的以及这一列上面放了棋子的列
flag[j] = 1;
dfs(i+1,num+1);
flag[j] = 0;
}
}
}
}
int main()
{
scanf("%d %d",&n,&k);
while(n!=-1 && k!=-1){
getchar();
for(int i = 0; i < n; i++)
gets(map[i]);
count = 0;
dfs(0,0);
printf("%d\n",count);
scanf("%d %d",&n,&k);
}
return 0;
}