POJ 1321 棋盘问题

Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
..#.
.#..
#…
-1 -1

Sample Output
2
1

简单的全部遍历即可,该列有棋子就标记,直至所有棋子全部放下为止。

#include<stdio.h>
#include<stdlib.h>
#define MAX 15
int count = 0;
int flag[MAX];
char map[MAX][MAX];
int n,k;

void dfs(int cur,int num)
{
    if(num == k){ /** 如果num==k 也就是,当前方案可行*/
        count++;
        return;
    }
    for(int i = cur; i<n; i++){
        for(int j = 0; j<n; j++){
        //遍历深搜每一个
            if(map[i][j]!='.' && flag[j] == 0){
            //跳过不在棋盘上的以及这一列上面放了棋子的列
                flag[j] = 1;
                dfs(i+1,num+1);
                flag[j] = 0;
            }
        }
    }
}

int main()
{
    scanf("%d %d",&n,&k);
    while(n!=-1 && k!=-1){
        getchar();
        for(int i = 0; i < n; i++)
            gets(map[i]);
        count = 0;
        dfs(0,0);
        printf("%d\n",count);
        scanf("%d %d",&n,&k);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值