- 博客(4)
- 收藏
- 关注
原创 Vicuna模型部署之下载模型权重
下载完 LLaMA 和 Vicuna 的权重后,要使用特定的脚本将两者合并,从而生成完整的 Vicuna 模型权重。由于 Vicuna 是基于 LLaMA 模型进行微调的,所以要先下载 LLaMA 的模型权重。此命令会把 LLaMA 的基础权重和 Vicuna 的附加权重合并,生成完整的 Vicuna 模型权重并保存到./model/vicuna-7b-all-v1.1目录。此命令会将 Vicuna 的附加权重下载到./model/vicuna-7b-delta-v1.1目录,你可按需调整路径。
2025-04-26 17:22:30
540
翻译 miniGPT-V2(大语言模型作为视觉-语言多任务学习的统一接口)
大预言模型已经显示出它们作为各种语言相关应用程序的通用接口的卓越功能,我们的目标是构建一个统一的界面,以完成许多视觉语言任务,包括图像描述、视觉问答和视觉基础等。实现这一目标的挑战是使用单一模型通过简单的多模态指令有效地执行不同的视觉语言任务。为了解决这个问题,我们引入了MiniGPT-v2,一个模型可以被视为一个统一的界面,以更好地处理各种视觉语言任务。我们建议在训练模型时为不同的任务使用唯一标识符。这些标识符使我们的模型能够毫不费力地区分每个任务命令,并提高每个任务的模型学习效率。,已尽可能标注来源。
2025-04-25 22:47:29
152
翻译 MiniGPT-4模型搭建——(1)基本介绍
MiniGPT-4结合了冻结的视觉编码器(Q-Former&ViT)和文本生成大模型(Vicuna)。由一个配备预训练视觉Transformer(ViT)和Q-Former的视觉编码器、一个单一的线性投影层以及一个先进的Vicuna大型语言模型组成。具体来说,视觉编码器负责将图像信息转换为模型可理解的向量表示,而文本生成器则根据这些向量和输入的文本信息生成相应的输出。MiniGPT-4的训练分为两个阶段:预训练和微调。随后,在微调阶段,模型会使用特定任务的数据集进行训练,以优化模型在该任务上的表现。
2025-03-22 03:13:05
151
1
原创 Keil5下载测试的时候显示Error:Flash Download failed-Could not load file是原因及解决
在使用Keil5进行下载测试时,遇到“Error: Flash Download failed - Could not load file”错误,可能的原因有多种。
2025-03-15 22:30:52
3390
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人