单调队列优化的多重背包

本文介绍了如何使用单调队列优化解决01多重背包问题,通过状态转移方程分析,将问题转化为动态维护最大值,从而将时间复杂度优化到O(nm),并提供了相关题目实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#单调队列优化的多重背包
##Decription
  给定N种物品和一个容量为M的背包,每种物品都有三个属性:价值 w i w_i wi、体积 v i v_i vi、个数 c i c_i ci
  目标:选择若干个物品装入背包,使其容量和不超过M,并最大化价值和
##Solution 1
  设 f i , j f_{i,j} fi,j表示考虑前 i i i种物品,装入容量为 j j j的背包获得的最大价值
  状态转移方程如下:
   f i , j = m a x { f i − 1 , j − k v i + k w i }   ( k ∈ [ 1 , j v i ] ) f_{i,j}=max\{f_{i-1,j-kv_i}+kw_i\} (k\in[1,\frac{j}{v_i}]) fi,j=max{ fi1,jkvi+kwi} (k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值