打卡哈利·波特吃饭的餐厅

 

在《哈利·波特》系列电影中,霍格沃茨魔法学校有一个宏伟庄重的餐厅,餐厅穹顶布满星星。在这个餐厅中,哈利、罗恩、赫敏等主人公参加新生入学晚宴、“分院”仪式、圣诞节晚餐、学生舞会等,平日用餐时,他们还暗暗地商讨对付对手的“特别计划”。而这个餐厅的原型就是牛津大学基督学院食堂,也被称为“大礼堂”。

基督学院创立于1525年,是牛津大学最大的学院,也是世界上唯一一所教堂式学院,其学生食堂是学院重要的组成部分。食堂每天供应四餐,早餐、中餐和两次晚餐。其中,下午六点的晚餐是非正式的,学生和老师可以着便装用餐;晚上八点的晚餐则是正式晚宴,用餐者必须身着正式的服装。

食堂的座位按照级别划分,如教授、资深研究员、访问研究员可以坐在“高桌”旁,学生坐的则是普通座位。这样的级别划分始于该学院的创始人,由于创始人是位主教,学院也曾一度叫“主教学院”,因此在很多地方保持了宗教上的等级划分。

在这里,教授们仍然保留与学生共同进餐的传统。正式晚宴开始时,学生先行入场,随后,院长、教授、贵宾入场,学生起立行注目礼以示尊敬,等大家都就座后,全体用餐者做饭前祈祷,然后才能开饭。

用餐者无需点菜,因为食堂会事先公开食谱,如典型的英国套餐包括罗宋汤、羊排、土豆、胡萝卜和苹果派,有时牛津大学也会请到法国大厨或米其林餐厅大厨入驻后厨。英国哲学家洛克、科学家爱因斯坦、《爱丽丝漫游仙境》的作者卡罗尔、英国多位首相和议员都曾在基督学院的食堂用餐。

想了解更多关于牛津大学的详情,请关注后学教育!

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值