Power OJ 2555: 火柴排队 离散化树状数组求逆序数

2555: 火柴排队

Time Limit: 3000MS Memory Limit: 131072KB
Total Submit: 35 Accepted: 9 Page View: 105
Submit  Status  Discuss

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:,其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最 小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。 
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
4
2 3 1 4
3 2 1 4
4
1 3 4 2
1 7 2 4
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
对于 10%的数据, 1 ≤ n ≤ 10;
对于 30%的数据,1 ≤ n ≤ 100;
对于 60%的数据,1 ≤ n ≤ 1,000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ 231 − 1。



首先是要确定位置,可以发现把a,b数组排序,这样可以使得每个两个数组间距离最小。


怎么求移动的次数呢?

a数组排序前有一个位置,记录下来。同理b也有个位置,记录下来。排完序过后,a对应的id就是相同位置的b的id需要移动到的地方。

用一个num数组,把这个a的id赋值给b原位置num。(离散化)

对这个num进行树状数组求逆序数。

树状数组求逆序数感觉很巧妙,边插入边求逆序数个数。

人家的树状数组求逆序数:点击打开链接

code

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5+10;
const LL mod = 99999997;
struct node{
    LL id;    ///排序后存的id
    LL rid;   ///输入的时候存放的原id
    LL val;
};

int n;
node a[N];
node b[N];
int num[N];  ///离散化过后的数组
int c[N];    ///用来进行树状数组维护数组

bool cmp1(node a,node b){
    return a.val < b.val;
}

int lowbit(int x){
    return x&(-x);
}

void update(int x){
    for(int i = x;i <= n;i+=lowbit(i))
        c[i]++;
}

LL getsum(int x){
    LL sum = 0;
    for(int i = x;i >= 1;i -= lowbit(i))
        sum += c[i];
    return sum;
}

int main()
{
    memset(c,0,sizeof c);
    scanf("%d",&n);
    for(int i = 1;i <= n;i++){
        scanf("%lld",&a[i].val);
        a[i].rid = i;
    }
    for(int i = 1;i <= n;i++){
        scanf("%lld",&b[i].val);
        b[i].rid = i;
    }
    sort(a+1,a+1+n,cmp1);
    sort(b+1,b+1+n,cmp1);
    for(int i = 1;i <= n;i++){
        b[i].id = a[i].rid;         ///排序后对应位置的a的id赋值给b的id
    }
    for(int i = 1;i <= n;i++){
        num[b[i].rid] = b[i].id;    ///使用一个num数组记录离散化的b的坐标
    }
    LL ans = 0;
    for(int i = 1;i <= n;i++){      ///更新一次查询一次
        update(num[i]);
        LL t1 = getsum(num[i]);
        LL t2 = getsum(n);
        ans += t2-t1;
    }
    ans %= mod;
    printf("%lld",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值