有一只蚂蚁,只能左转,给你一些点集,这只蚂蚁只能到达点的时候左转,不用在乎多远,反正它都会走到~~
问,如何让这只蚂蚁做够最多的点,这些点链接起来的路线不能交叉,且蚂蚁开始的第一个点是(0,miny) miny 是点集中y值最小。
题目里面的三个条件,看完第一想法是想到graham的凸包算法,算出凸包,再在剩下的点中算出凸包,链接他们,依次。
后面想想不用这么麻烦,核心就是用叉积算一下看一下目前这个点相对于起始点是不是级角最小的点就好了。算是凸包的变形吧,但是不用求出完整的凸包。
但是题目里面提到,不能走一条直线时候路过了两点点,所以要判断一下如果三点共线,选取距离小的。
就酱紫,点才50个,oms的AC了。
#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
struct pnode
{
int id;
int x,y;
pnode(){}
pnode(int a,int b):x(a),y(b){}
void pread()
{
scanf("%d %d %d",&id,&x,&y);
}
pnode operator - (const pnode &b)const
{
return pnode(x-b.x,y-b.y);
}
int operator ^ (const pnode &b)const
{
return x*b.y - y *b.x;
}
int operator * (const pnode &b)const
{
return x*b.x + y *b.y;
}
};
pnode point[60],plant[60];
bool vis[60];
#define FONE(i,n) for(int i=1;i<=n;++i)
int cross( pnode p0,pnode p1,pnode p2 )
{
return (p1-p0) ^ ( p2- p0);
}
int dot(pnode st,pnode ed)
{
return (ed-st) * (ed-st);
}
double dist(pnode st,pnode ed)
{
return sqrt( dot(st,ed));
}
int work(int n)
{
int ans = 1;
int s = 0,now = 0,f=0;
plant[0] = point[0];
while( ans<= n)
{
f = 0;
FONE(i,n)
{
if(f==0 && !vis[i] )
{
f = 1;
now = i;
continue;
}
else if( !vis[i] )
{
if ( ( cross(point[s],point[now],point[i]) < 0 )
|| ( cross(point[s],point[now],point[i])==0
&& dist(point[s],point[i])<dist(point[s],point[now])))
now = i;
}
}
plant[ans++] = point[now];
vis[now] = true;
s = now;
}
return ans;
}
int main()
{
int cas,n;
scanf("%d",&cas);
while( cas-- )
{
memset(vis,false,sizeof vis);
point[0] = pnode(0,100+5);
scanf("%d",&n);
FONE(i,n)
{
point[i].pread();
point[0].y = point[i].y < point[0].y ? point[i].y : point [0].y;
}
int ans = work(n)-2;
printf("%d ",ans+1);
FONE(i,ans)
printf("%d ",plant[i].id);
printf("%d\n",plant[ans+1].id);
}
return 0;
}