POJ 1696 || Space Ant (叉积,凸包变形题

这道题目的关键是利用叉积判断蚂蚁行走路径的极角,避免路线交叉。蚂蚁从(0, miny)出发,只能左转,通过计算每个点相对于起点的角度来确定蚂蚁的行走顺序。若三点共线,则选择距离更短的点。通过这种方法,可以找到使蚂蚁经过最多点的路径,而无需完整计算凸包。" 120100652,10754669,跨平台智能交易程序:MQL5标准库控件的重用与适配,"['MT5', '交易程序', '编程']
摘要由CSDN通过智能技术生成

有一只蚂蚁,只能左转,给你一些点集,这只蚂蚁只能到达点的时候左转,不用在乎多远,反正它都会走到~~

问,如何让这只蚂蚁做够最多的点,这些点链接起来的路线不能交叉,且蚂蚁开始的第一个点是(0,miny) miny 是点集中y值最小。


题目里面的三个条件,看完第一想法是想到graham的凸包算法,算出凸包,再在剩下的点中算出凸包,链接他们,依次。

后面想想不用这么麻烦,核心就是用叉积算一下看一下目前这个点相对于起始点是不是级角最小的点就好了。算是凸包的变形吧,但是不用求出完整的凸包。

但是题目里面提到,不能走一条直线时候路过了两点点,所以要判断一下如果三点共线,选取距离小的。


就酱紫,点才50个,oms的AC了。

#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
struct pnode
{
    int id;
    int x,y;
    pnode(){}
    pnode(int a,int b):x(a),y(b){}
    void pread()
    {
        scanf("%d %d %d",&id,&x,&y);
    }
    pnode operator - (const pnode &b)const
    {
        return pnode(x-b.x,y-b.y);
    }
    int operator ^ (const pnode &b)const
    {
        return x*b.y - y *b.x;
    }
    int operator * (const pnode &b)const
    {
        return x*b.x + y *b.y;
    }

};
pnode point[60],plant[60];
bool vis[60];
#define FONE(i,n) for(int i=1;i<=n;++i)
int cross( pnode p0,pnode p1,pnode p2 )
{
    return (p1-p0) ^ ( p2- p0);
}
int dot(pnode st,pnode ed)
{
    return (ed-st) * (ed-st);
}
double dist(pnode st,pnode ed)
{
    return sqrt( dot(st,ed));
}
int work(int n)
{
    int ans = 1;
    int s = 0,now = 0,f=0;
    plant[0] = point[0];
    while( ans<= n)
    {
        f = 0;
        FONE(i,n)
        {
            if(f==0 &&  !vis[i]  )
            {
                f = 1;
                now = i;
                continue;
            }
            else if( !vis[i] )
            {
                if ( ( cross(point[s],point[now],point[i]) < 0 )
                    || (  cross(point[s],point[now],point[i])==0 
                        && dist(point[s],point[i])<dist(point[s],point[now])))
                now = i;
            }
        }
        plant[ans++] = point[now];
        vis[now] = true;
        s = now;
    }
    return ans;

}
int main()
{
    int cas,n;
    scanf("%d",&cas);
    while( cas-- )
    {
        memset(vis,false,sizeof vis);
        point[0] = pnode(0,100+5);
        scanf("%d",&n);
        FONE(i,n)
        {
            point[i].pread();
            point[0].y = point[i].y < point[0].y ? point[i].y : point [0].y;
        }
        int ans = work(n)-2;
        printf("%d ",ans+1);
        FONE(i,ans)
            printf("%d ",plant[i].id);
        printf("%d\n",plant[ans+1].id);

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值