贪婪算法的应用
第一章、什么是贪婪算法?
贪心算法,又名贪婪法,是寻找最优解问题的常用方法,这种方法模式一般将求解过程分成若干个步骤,但每个步骤都应用贪心原则,选取当前状态下最好/最优的选择(局部最有利的选择),并以此希望最后堆叠出的结果也是最好/最优的解。{看着这个名字,贪心,贪婪这两字的内在含义最为关键。这就好像一个贪婪的人,他事事都想要眼前看到最好的那个,看不到长远的东西,也不为最终的结果和将来着想,贪图眼前局部的利益最大化,有点走一步看一步的感觉。}
贪婪法的基本步骤:
步骤1:从某个初始解出发;
步骤2:采用迭代的过程,当可以向目标前进一步时,就根据局部最优策略,得到一部分解,缩小问题规模;
步骤3:将所有解综合起来。
第二章、算例分析
我
假设你开了间小店,不能电子支付,钱柜里的货币只有 25 分、10 分、5 分和 1 分四种硬币,如果你是售货员且要找给客户 41 分钱的硬币,如何安排才能找给客人的钱既正确且硬币的个数又最少?
这里需要明确的几个点:
1.货币只有 25 分、10 分、5 分和 1 分四种硬币;
2.找给客户 41 分钱的硬币;
3.硬币最少化
第三章、直接求解
import time
start=time.perf_counter()
summoney=41
money1=25
money2=10
money3=5
money4=1
sum=[]
for i in range(int(summoney/money1)+1):
for j in range(int(summoney/money2)+1):
for k in range(int(summoney/money3)+1):
for l in range(int(summoney/money4)+1):
nowmoney=i*money1+j*money2+k*money3+l*money4
if nowmoney==summoney:
print("25分个数为:{},10分个数为:{},5分个数为:{},1分个数为:{}".format(i,j,k,l))
sum.append(i+j+k+l)
print("硬币数最少为:{}".format(min(sum)))
end=time.perf_counter()
print("程序运行时间为:{}s".format(end-start))
运行结果:
25分个数为:0,10分个数为:0,5分个数为:0,1分个数为:41
25分个数为:0,10分个数为:0,5分个数为:1,1分个数为:36
25分个数为:0,10分个数为:0,5分个数为:2,1分个数为:31
25分个数为:0,10分个数为:0,5分个数为:3,1分个数为:26
25分个数为:0,10分个数为:0,5分个数为:4,1分个数为:21
25分个数为:0,10分个数为:0,5分个数为:5,1分个数为:16
25分个数为:0,10分个数为:0,5分个数为:6,1分个数为:11
25分个数为:0,10分个数为:0,5分个数为:7,1分个数为:6
25分个数为:0,10分个数为:0,5分个数为:8,1分个数为:1
25分个数为:0,10分个数为:1,5分个数为:0,1分个数为:31
25分个数为:0,10分个数为:1,5分个数为:1,1分个数为:26
25分个数为:0,10分个数为:1,5分个数为:2,1分个数为:21
25分个数为:0,10分个数为:1,5分个数为:3,1分个数为:16
25分个数为:0,10分个数为:1,5分个数为:4,1分个数为:11
25分个数为:0,10分个数为:1,5分个数为:5,1分个数为:6
25分个数为:0,10分个数为:1,5分个数为:6,1分个数为:1
25分个数为:0,10分个数为:2,5分个数为:0,1分个数为:21
25分个数为:0,10分个数为:2,5分个数为:1,1分个数为:16
25分个数为:0,10分个数为:2,5分个数为:2,1分个数为:11
25分个数为:0,10分个数为:2,5分个数为:3,1分个数为:6
25分个数为:0,10分个数为:2,5分个数为:4,1分个数为:1
25分个数为:0,10分个数为:3,5分个数为:0,1分个数为:11
25分个数为:0,10分个数为:3,5分个数为:1,1分个数为:6
25分个数为:0,10分个数为:3,5分个数为:2,1分个数为:1
25分个数为:0,10分个数为:4,5分个数为:0,1分个数为:1
25分个数为:1,10分个数为:0,5分个数为:0,1分个数为:16
25分个数为:1,10分个数为:0,5分个数为:1,1分个数为:11
25分个数为:1,10分个数为:0,5分个数为:2,1分个数为:6
25分个数为:1,10分个数为:0,5分个数为:3,1分个数为:1
25分个数为:1,10分个数为:1,5分个数为:0,1分个数为:6
25分个数为:1,10分个数为:1,5分个数为:1,1分个数为:1
硬币数最少为:4
程序运行时间为:0.04255560000000003s
第四章、贪心算法求解
import time
start=time.perf_counter()
summoney=41
money1=25
money2=10
money3=5
money4=1
for i in range(int(summoney/money1)+1):
if i*money1<summoney:
if money1*(i+1)>summoney:
print("25分的个数为:{}".format(i))
summoney=summoney-i*money1
else:
print("25分的个数为:{}".format(i))
for j in range(int(summoney/money2)+1):
if j*money2<summoney:
if (j+1)*money2>summoney:
print("10分的个数为:{}".format(j))
summoney=summoney-money2*j
else:
print("10分的个数为:{}".format(j))
for k in range(int(summoney/money3)+1):
if k*money3<summoney:
if (k+1)*money3>summoney:
print("5分的个数为:{}".format(k))
summoney=summoney-money3*k
else:
print("5分的个数为:{}".format(k))
for l in range(int(summoney/money4)+1):
if l*money4<summoney:
if (l+1)*money4>summoney:
print("1分的个数为:{}".format(l))
summoney=summoney-l*money4
else:
print("1分的个数为:{}".format(l))
end=time.perf_counter()
print("运行时间为:{}s".format(end-start))
运行结果:
25分的个数为:1
10分的个数为:1
5分的个数为:1
1分的个数为:1
运行时间为:0.003920400000000157s