//Floyed-Warshall算法 O(N^3)
/*
经典的多源最短路径算法
作用:
1.求最短路。
2.判断一张图中的两点是否相连。
思想:
3层循环;
第一层枚举中间点k,第二层与第三层枚举两个端点i,j。
若有dis[i][j] > dis[i][k] + dis[k][j]
则把dis[i][j]更新成dis[i][k] + dis[k][j]
一般我们会说这是一个动态规划算法.
因为它有递推公式:d[i][j]=min(d[i][j],d[i][k]+d[k][j])
三重循环,k要写外面,里面的i,j是对称的,
*/
//如何进行初始化:
//1.
void init(){
for(int i=0;i<=n;i++){
for(int j=0;j<=n;j++){
dis[i][j] = inf;
if(i == j) dis[i][j] = 0;
}
}
}
//2.
void init(){
for(int i=0;i<=n;i++){
for(int j=i+1;j<=n;j++){
dis[j][i] = dis[i][j] = inf;
}
dis[i][i]=0;
}
}
//3.
memset(dis,0x3f,sizeof(dis));
//Floyd实现:
void floyd(){
//先进行初始化
//实现
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(dis[i][j]>dis[i][k]+dis[k][j])
dis[i][j]=dis[i][k]+dis[k][j];
/*可以快那么一点点
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
if(i!=k){
for(int j=1;j<=n;j++){
if(i!=j &&j!=k){
dis[i][j] = min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
}
}*/
}
//判断两点是否可以通过某条路径相连
void floydbool(){
bool dis[100][100];
//初始化 dis
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
dis[i][j] = dis[i][j] ||(dis[i][k]&&dis[k][j]);
}
}
}
}
//路径还原
//方法一:栈实现
int pre[N][N];//记录当前顶点的前一个顶点
void init(){
for(int i=0;i<=n;i++){
for(int j=0;j<=n;j++){
dis[i][j] = inf;
if(i == j) dis[i][j] = 0;
//对pre的初始化:这个地方要赋值成i
pre[i][j] = i;
}
}
}
void floyd(){
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dis[i][j]>dis[i][k]+dis[k][j]){
dis[i][j]=dis[i][k]+dis[k][j];
pre[i][j] = pre[k][j];//i->k->j 记录k->j
}
}
void printpath()
{
stack<int> path;
int start = 1;
int temp = pre[start][n];//起点到终点//读取终点的前一个节点的位置
path.push(n);//加入终点
while(true){
path.push(temp);//第一次加入的是终点前一个节点的位置
if(temp == start) break;//如果已经把起点加进去了之后就可以推出
temp = pre[start][temp];//获取前一个节点
}
while(!path.empty()){//输出
cout<<path.top()<<endl;
path.pop();
}
}
//非栈实现:
void init(){
for(int i=0;i<=n;i++){
for(int j=0;j<=n;j++){
dis[i][j] = inf;
if(i == j) dis[i][j] = 0;
//对pre的初始化
pre[i][j] = j;//这个赋值赋值成j
}
}
}
void floyd(){
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dis[i][j]>dis[i][k]+dis[k][j]){
dis[i][j]=dis[i][k]+dis[k][j];
pre[i][j] = pre[i][k];//i->k->j 记录i->k
}
}
void printpath2()
{
int start = 1;
int eend = n;
cout<<start<<endl;;
int temp = pre[start][eend];
while(true){
cout<<temp<<endl;
if(temp == eend) break;
temp = pre[temp][eend];
}
/*
5 5
1 2 1
2 4 1
2 3 4
4 3 1
3 5 3
1
2
4
3
5
*/
//其他方式的路径还原:递归实现
//初始化
path[i][j] = 0;
//floyd
path[i][j] = k;
//path[i][j]表示从i 到 j 必须经过path[i][j];
void printpath3(int i,int j){
if(i == j) return 0;
printpath3(i,path[i][j]);
cout<<path[i][i]<<endl;
printpath3(path[i][j],j);
}