MapReduce实战之流量汇总案例

本文介绍了一个基于MapReduce的流量统计方案,包括统计每个手机号的总上行和下行流量,按省份输出结果,以及按总流量排序。通过自定义bean、partitioner和实现WritableComparable接口,实现了需求。
摘要由CSDN通过智能技术生成

2.1 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)

1)需求:

统计每一个手机号耗费的总上行流量、下行流量、总流量

2)数据准备

1363157985066     13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
1363157995052     13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200
1363157991076     13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200
1363154400022     13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    200
1363157993044     18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    
视频网站    15    12    1527    2106    200
1363157995074     84138413    5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    200
1363157993055     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200
1363157995033     15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    200
1363157983019     13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    200
1363157984041     13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    200
1363157973098     15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    200
1363157986029     15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    200
1363157992093     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    200
1363157986041     13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    200
1363157984040     13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    200
1363157995093     13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    200
1363157982040     13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    200
1363157986072     18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    200
1363157990043     13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    200
1363157988072     13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    200
1363157985066     13560436666    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
1363157993055     13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200

3)分析

基本思路:

Map阶段:

1)读取一行数据,切分字段

2)抽取手机号、上行流量、下行流量

3)以手机号为keybean对象为value输出,即context.write(手机号,bean);

Reduce阶段:

1)累加上行流量和下行流量得到总流量。

2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,key实现接口:WritableComparable

然后重写keycompareTo方法。

4)编写mapreduce程序

       1)编写流量统计的bean对象

package com.atguigu.mapreduce.flowsum;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.Writable;

 

// 1 实现writable接口

public class FlowBean implements Writable{

 

       private long upFlow ;

       private long downFlow;

       private long sumFlow;

      

       //2  反序列化时,需要反射调用空参构造函数,所以必须有

       public FlowBean() {

              super();

       }

 

       public FlowBean(long upFlow, long downFlow) {

              super();

              this.upFlow = upFlow;

              this.downFlow = downFlow;

              this.sumFlow = upFlow + downFlow;

       }

      

       //3  写序列化方法

       @Override

       public void write(DataOutput out) throws IOException {

              out.writeLong(upFlow);

              out.writeLong(downFlow);

              out.writeLong(sumFlow);

       }

      

       //4 反序列化方法

       //5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致

       @Override

       public void readFields(DataInput in) throws IOException {

              this.upFlow  = in.readLong();

              this.downFlow = in.readLong();

              this.sumFlow = in.readLong();

       }

 

       // 6 编写toString方法,方便后续打印到文本

       @Override

       public String toString() {

              return upFlow + "\t" + downFlow + "\t" + sumFlow;

       }

 

       public long getUpFlow() {

              return upFlow;

       }

 

       public void setUpFlow(long upFlow) {

              this.upFlow = upFlow;

       }

 

       public long getDownFlow() {

              return downFlow;

       }

 

       public void setDownFlow(long downFlow) {

              this.downFlow = downFlow;

       }

 

       public long getSumFlow() {

              return sumFlow;

       }

 

       public void setSumFlow(long sumFlow) {

              this.sumFlow = sumFlow;

       }

 

}

       2)编写mapper

package com.atguigu.mapreduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

      

       FlowBean v = new FlowBean();

       Text k = new Text();

      

       @Override

       protected void map(LongWritable key, Text value, Context context)

                     throws IOException, InterruptedException {

             

              // 1 获取一行

              String line = value.toString();

             

              // 2 切割字段

              String[] fields = line.split("\t");

             

              // 3 封装对象

              // 取出手机号码

              String phoneNum = fields[1];

              // 取出上行流量和下行流量

              long upFlow = Long.parseLong(fields[fields.length - 3]);

              long downFlow = Long.parseLong(fields[fields.length - 2]);

             

              v.set(downFlow, upFlow);

             

              // 4 写出

              context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow));

       }

}

       3)编写reducer

package com.atguigu.mapreduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

 

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

 

       @Override

       protected void reduce(Text key, Iterable<FlowBean> values, Context context)

                     throws IOException, InterruptedException {

 

              long sum_upFlow = 0;

              long sum_downFlow = 0;

 

              // 1 遍历所用bean,将其中的上行流量,下行流量分别累加

              for (FlowBean flowBean : values) {

                     sum_upFlow += flowBean.getSumFlow();

                     sum_downFlow += flowBean.getDownFlow();

              }

 

              // 2 封装对象

              FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);

             

              // 3 写出

              context.write(key, resultBean);

       }

}

       4)编写驱动

package com.atguigu.mapreduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class FlowsumDriver {

 

       public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

             

              // 1 获取配置信息,或者job对象实例

              Configuration configuration = new Configuration();

              Job job = Job.getInstance(configuration);

 

              // 6 指定本程序的jar包所在的本地路径

              job.setJarByClass(FlowsumDriver.class);

 

              // 2 指定本业务job要使用的mapper/Reducer业务类

              job.setMapperClass(FlowCountMapper.class);

              job.setReducerClass(FlowCountReducer.class);

 

              // 3 指定mapper输出数据的kv类型

              job.setMapOutputKeyClass(Text.class);

              job.setMapOutputValueClass(FlowBean.class);

 

              // 4 指定最终输出的数据的kv类型

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(FlowBean.class);

             

              // 5 指定job的输入原始文件所在目录

              FileInputFormat.setInputPaths(job, new Path(args[0]));

              FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

              // 7 job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行

              boolean result = job.waitForCompletion(true);

              System.exit(result ? 0 : 1);

       }

}

 

2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

0)需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

1)数据准备

     数据同上

2)分析

1Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据keyhashcode%reducetask数来分发

2)如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner

自定义一个CustomPartitioner继承抽象类:Partitioner

3)在job驱动中,设置自定义partitioner job.setPartitionerClass(CustomPartitioner.class)

3)在需求1的基础上,增加一个分区类

package com.atguigu.mapreduce.flowsum;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Partitioner;

 

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

 

       @Override

       public int getPartition(Text key, FlowBean value, int numPartitions) {

              // 1 获取电话号码的前三位

              String preNum = key.toString().substring(0, 3);

             

              int partition = 4;

             

              // 2 判断是哪个省

              if ("136".equals(preNum)) {

                     partition = 0;

              }else if ("137".equals(preNum)) {

                     partition = 1;

              }else if ("138".equals(preNum)) {

                     partition = 2;

              }else if ("139".equals(preNum)) {

                     partition = 3;

              }

 

              return partition;

       }

}

2)在驱动函数中增加自定义数据分区设置和reduce task设置

package com.atguigu.mapreduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class FlowsumDriver {

 

       public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

             

              // 1 获取配置信息,或者job对象实例

              Configuration configuration = new Configuration();

              Job job = Job.getInstance(configuration);

 

              // 6 指定本程序的jar包所在的本地路径

              job.setJarByClass(FlowsumDriver.class);

 

              // 2 指定本业务job要使用的mapper/Reducer业务类

              job.setMapperClass(FlowCountMapper.class);

              job.setReducerClass(FlowCountReducer.class);

 

              // 3 指定mapper输出数据的kv类型

              job.setMapOutputKeyClass(Text.class);

              job.setMapOutputValueClass(FlowBean.class);

 

              // 4 指定最终输出的数据的kv类型

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(FlowBean.class);

 

              // 8 指定自定义数据分区

              job.setPartitionerClass(ProvincePartitioner.class);

              // 9 同时指定相应数量的reduce task

              job.setNumReduceTasks(5);

             

              // 5 指定job的输入原始文件所在目录

              FileInputFormat.setInputPaths(job, new Path(args[0]));

              FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

              // 7 job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行

              boolean result = job.waitForCompletion(true);

              System.exit(result ? 0 : 1);

       }

}

 

2.3 需求3:将统计结果按照总流量倒序排序(全排序)

0)需求

根据需求1产生的结果再次对总流量进行排序。

1)数据准备

     数据同上

2)分析

       (1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序

       (2)context.write(总流量,手机号)

       (3)FlowBean实现WritableComparable接口重写compareTo方法

@Override

public int compareTo(FlowBean o) {

       // 倒序排列,从大到小

       return this.sumFlow > o.getSumFlow() ? -1 : 1;

}

3)代码实现

1FlowBean对象在在需求1基础上增加了比较功能

package com.atguigu.mapreduce.sort;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

 

public class FlowBean implements WritableComparable<FlowBean> {

 

       private long upFlow;

       private long downFlow;

       private long sumFlow;

 

       // 反序列化时,需要反射调用空参构造函数,所以必须有

       public FlowBean() {

              super();

       }

 

       public FlowBean(long upFlow, long downFlow) {

              super();

              this.upFlow = upFlow;

              this.downFlow = downFlow;

              this.sumFlow = upFlow + downFlow;

       }

 

       public void set(long upFlow, long downFlow) {

              this.upFlow = upFlow;

              this.downFlow = downFlow;

              this.sumFlow = upFlow + downFlow;

       }

 

       public long getSumFlow() {

              return sumFlow;

       }

 

       public void setSumFlow(long sumFlow) {

              this.sumFlow = sumFlow;

       }

 

       public long getUpFlow() {

              return upFlow;

       }

 

       public void setUpFlow(long upFlow) {

              this.upFlow = upFlow;

       }

 

       public long getDownFlow() {

              return downFlow;

       }

 

       public void setDownFlow(long downFlow) {

              this.downFlow = downFlow;

       }

 

       /**

        * 序列化方法

        * @param out

        * @throws IOException

        */

       @Override

       public void write(DataOutput out) throws IOException {

              out.writeLong(upFlow);

              out.writeLong(downFlow);

              out.writeLong(sumFlow);

       }

 

       /**

        * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致

        * @param in

        * @throws IOException

        */

       @Override

       public void readFields(DataInput in) throws IOException {

              upFlow = in.readLong();

              downFlow = in.readLong();

              sumFlow = in.readLong();

       }

 

       @Override

       public String toString() {

              return upFlow + "\t" + downFlow + "\t" + sumFlow;

       }

 

       @Override

       public int compareTo(FlowBean o) {

              // 倒序排列,从大到小

              return this.sumFlow > o.getSumFlow() ? -1 : 1;

       }

}

       2)编写mapper

package com.atguigu.mapreduce.sort;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

 

public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{

       FlowBean bean = new FlowBean();

       Text v = new Text();

 

       @Override

       protected void map(LongWritable key, Text value, Context context)

                     throws IOException, InterruptedException {

 

              // 1 获取一行

              String line = value.toString();

             

              // 2 截取

              String[] fields = line.split("\t");

             

              // 3 封装对象

              String phoneNbr = fields[0];

              long upFlow = Long.parseLong(fields[1]);

              long downFlow = Long.parseLong(fields[2]);

             

              bean.set(upFlow, downFlow);

              v.set(phoneNbr);

             

              // 4 输出

              context.write(bean, v);

       }

}

       3)编写reducer

package com.atguigu.mapreduce.sort;

import java.io.IOException;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

 

public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{

 

       @Override

       protected void reduce(FlowBean key, Iterable<Text> values, Context context)

                     throws IOException, InterruptedException {

             

              // 循环输出,避免总流量相同情况

              for (Text text : values) {

                     context.write(text, key);

              }

       }

}

       4)编写driver

package com.atguigu.mapreduce.sort;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class FlowCountSortDriver {

 

       public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {

             

              // 1 获取配置信息,或者job对象实例

              Configuration configuration = new Configuration();

              Job job = Job.getInstance(configuration);

 

              // 6 指定本程序的jar包所在的本地路径

              job.setJarByClass(FlowCountSortDriver.class);

 

              // 2 指定本业务job要使用的mapper/Reducer业务类

              job.setMapperClass(FlowCountSortMapper.class);

              job.setReducerClass(FlowCountSortReducer.class);

 

              // 3 指定mapper输出数据的kv类型

              job.setMapOutputKeyClass(FlowBean.class);

              job.setMapOutputValueClass(Text.class);

 

              // 4 指定最终输出的数据的kv类型

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(FlowBean.class);

 

              // 5 指定job的输入原始文件所在目录

              FileInputFormat.setInputPaths(job, new Path(args[0]));

              FileOutputFormat.setOutputPath(job, new Path(args[1]));

             

              // 7 job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行

              boolean result = job.waitForCompletion(true);

              System.exit(result ? 0 : 1);

       }

}

 

2.4 需求4:不同省份输出文件内部排序(部分排序)

1)需求

要求每个省份手机号输出的文件中按照总流量内部排序。

2)分析:

       基于需求3,增加自定义分区类即可。

3)案例实操

1)增加自定义分区类

package com.atguigu.mapreduce.sort;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Partitioner;

 

public class ProvincePartitioner extends Partitioner<FlowBean, Text> {

 

       @Override

       public int getPartition(FlowBean key, Text value, int numPartitions) {

             

              // 1 获取手机号码前三位

              String preNum = value.toString().substring(0, 3);

             

              int partition = 4;

             

              // 2 根据手机号归属地设置分区

              if ("136".equals(preNum)) {

                     partition = 0;

              }else if ("137".equals(preNum)) {

                     partition = 1;

              }else if ("138".equals(preNum)) {

                     partition = 2;

              }else if ("139".equals(preNum)) {

                     partition = 3;

              }

 

              return partition;

       }

}

2)在驱动类中添加分区类

       // 加载自定义分区类

job.setPartitionerClass(FlowSortPartitioner.class);

// 设置Reducetask个数

       job.setNumReduceTasks(5);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值