算法设计之使用动态规划解决菲波那切数列

//记忆化搜索
int fib(int n)
{
	static vector<int> m_memory = vector<int>(n + 1, -1);
	if (n == 0 || n == 1)
	{
		return 1;
	}

	if (m_memory[n] == -1)
	{
		m_memory[n] = fib(n - 1) + fib(n - 2);
	}

	return m_memory[n];
}

//普通的递归-----原始的解法
int fib2(int n)
{
	if (n == 0|n==1)
	{
		return 1;
	}
	return fib2(n - 1) + fib2(n - 2);

}

//动态规划
int fib3(int n)
{
	std::vector<int> m_mem(n + 1, -1);
	m_mem[0] = 1;
	m_mem[1] = 1;
	for (int i = 2; i <= n;i++)
	{
		m_mem[i] = m_mem[i - 1] + m_mem[i - 2];
	}
	return m_mem[n];

}

int main()
{
	//1,1,2,3,5,8,13
	clock_t t1 = clock();
	int n = fib(40);
	clock_t t2 = clock();
	cout <<"fib need time :"<< t2-t1 <<"fib(40):"<<n<< endl;


	clock_t t3 = clock();
	int n1 = fib2(40);
	clock_t t4 = clock();
	cout << "fib2 need time :" << t4 - t3 << "fib2(40):" << n1 << endl;


	clock_t t5 = clock();
	int n2 = fib3(40);
	clock_t t6 = clock();
	cout << "fib3 need time :" << t6 - t5 << "fib3(40):" << n2 << endl;


	system("pause");
	return 0;
}

结果:
在这里插入图片描述
从结果中看出无论是记忆搜索还是动态规划都比原始的效率要高出许多。这种思想值得我们学习。

总结:
动态规划:
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

发如雪-ty

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值