Hadoop 电话通信清单

该文章介绍了一个使用HadoopMapReduce框架解决电话通信记录统计问题的例子。程序通过Mapper将原始数据拆分,以被叫号码为key,主叫号码为value,然后Reducer将相同的被叫号码的主叫号码进行聚合,以|分隔并输出到HDFS。
摘要由CSDN通过智能技术生成

一、实例要求

  现有一批电话通信清单,记录了用户A拨打某些特殊号码(如120,10086,13800138000等)的记录。需要做一个统计结果,记录拨打给用户B的所有用户A。

二、测试样例

  样例输入:

  file.txt:

  13599999999 10086
  13899999999 120
  13944444444 1380013800
  13722222222 1380013800
  18800000000 120
  13722222222 10086
  18944444444 10086

  样例输出:

  

三、算法思路

  源文件——》Mapper(分隔原始数据,以被叫作为key,以主叫作为value)——》Reducer(把拥有相同被叫的主叫号码用|分隔汇总)——》输出到HDFS

四、程序代码

  程序代码如下:

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;




public class Tel {
    
    public static class Map extends Mapper<LongWritable, Text, Text, Text>{
        @Override
        protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            //  super.map(key, value, context);
            String line = value.toString();
            Text word = new Text();
            String [] lineSplite = line.split(" ");
            String anum = lineSplite[0];
            String bnum = lineSplite[1];
            context.write(new Text(bnum), new Text(anum));
        }
    }
    
    public static class Reduce extends Reducer<Text, Text, Text, Text>{
        @Override
        protected void reduce(Text key, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            //  super.reduce(arg0, arg1, arg2);
            String valueString;
            String out ="";
            for(Text value: values){
                valueString=value.toString();
                out += valueString+"|";
            }
            context.write(key, new Text(out));
        }
    }
    
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
        if(otherArgs.length!=2){
            System.out.println("Usage:wordcount <in> <out>");
            System.exit(2);
        }
        Job job = new Job(conf,"Tel");
        job.setJarByClass(Tel.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.waitForCompletion(true);
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

|旧市拾荒|

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值