验证“哥德巴赫猜想”
数学领域著名的“哥德巴赫猜想”的大致意思是:
任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。
本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。
输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。
输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。
又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。
输入样例:
24
输出样例:
24 = 5 + 19
参考了 人生苦短我爱Python 大佬的题解7-6 验证“哥德巴赫猜想”(20 分)
学习到了这个判断素数的方法
更换了代码风格,补充了一点注释
#include <stdio.h>
int judge(int n);
int main()
{
int n,i;
scanf("%d",&n);
//一半就行,因为分解出来的两个素数一定不相等,一个大一个小(其实不加这个/2也ok)
//一半就行个p,试试4的点,之后又改成n,过了
for(i=2;i<n;i++) {
if (judge(i)&&judge(n-i))
{
printf("%d = %d + %d",n,i,n-i);return 0;
}
}return 0;
}
//判断素数
int judge(int n)
{
int i;
if(n==1)return 0;//素数定义,1不是素数
if(n==2)return 1;
if(n%2==0)return 0;//偶数不是素数
for(i=3;i*i<=n;i+=2)
if(n%i==0)return 0;//能分解出两个奇数因子(非1)的数不是素数
return 1;
}