验证“哥德巴赫猜想”

验证“哥德巴赫猜想”

数学领域著名的“哥德巴赫猜想”的大致意思是:
任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。
本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。

输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。

输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。
又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。

输入样例:

24

输出样例:

24 = 5 + 19

参考了 人生苦短我爱Python 大佬的题解7-6 验证“哥德巴赫猜想”(20 分)
学习到了这个判断素数的方法
更换了代码风格,补充了一点注释

#include <stdio.h>
int judge(int n);
int main()
{
    int n,i;
    scanf("%d",&n);
    //一半就行,因为分解出来的两个素数一定不相等,一个大一个小(其实不加这个/2也ok)
    //一半就行个p,试试4的点,之后又改成n,过了
    for(i=2;i<n;i++) {
        if (judge(i)&&judge(n-i))
        {
            printf("%d = %d + %d",n,i,n-i);return 0;
        }
	}return 0;
}
//判断素数
int judge(int n)
{
    int i;
	if(n==1)return 0;//素数定义,1不是素数
    if(n==2)return 1;
    if(n%2==0)return 0;//偶数不是素数
    for(i=3;i*i<=n;i+=2)
    	if(n%i==0)return 0;//能分解出两个奇数因子(非1)的数不是素数
    return 1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值