人脸识别考勤系统应用:基于改进YOLO11-EUCB-SC的实时人脸检测与考勤管理

1. 人脸识别考勤系统应用:基于改进YOLO11-EUCB-SC的实时人脸检测与考勤管理

👋 大家好!今天我要分享一个超实用的人脸识别考勤系统项目,使用了改进的YOLO11-EUCB-SC算法,实现实时人脸检测与考勤管理。这个系统不仅准确率高,而且运行速度快,特别适合企业、学校等场所使用!🚀

1.1. 项目概述

人脸识别技术已经广泛应用于各个领域,其中考勤管理是最常见的应用场景之一。传统考勤方式如打卡、签到等不仅耗时耗力,还容易出现代打卡等问题。基于深度学习的人脸识别考勤系统能够实现自动化、高精度的身份识别,大大提高了考勤效率和管理水平。

本系统采用改进的YOLO11-EUCB-SC算法,在保持高检测精度的同时,显著提升了检测速度,能够在普通GPU设备上实现实时检测。系统还具备考勤记录、统计分析、异常检测等功能,为企业提供全方位的考勤管理解决方案。

图1:人脸识别考勤系统整体架构图

如图1所示,系统主要由数据采集模块、人脸检测模块、特征提取模块、身份匹配模块和考勤管理模块组成。其中,人脸检测模块采用了改进的YOLO11-EUCB-SC算法,是整个系统的核心技术。

1.2. 数据集介绍与预处理

1.2.1. 数据集获取

我们使用的人脸考勤系统数据集来自qunshankj平台,该数据集包含134张图像,采用YOLOv8格式标注,包含"Mook"和"Ohm"两个人脸类别。原始数据集已经过预处理,包括自动方向调整(EXIF方向信息剥离)和拉伸至640×640像素大小,未应用图像增强技术。

数据集获取链接:

数据集按照7:2:1的比例划分为训练集、验证集和测试集,具体分布如表1所示。划分过程确保各类别在三个子集中的分布比例一致,避免类别不平衡问题。

在这里插入图片描述
表1 数据集划分

数据集训练集验证集测试集
图像数量942713
Mook类别47137
Ohm类别47146

数据集存储结构遵循YOLO格式要求,包含图像文件和对应的标注文件,标注文件中每行包含目标类别、中心点坐标和宽高信息,均归一化到0-1范围。这种格式便于直接输入到YOLO系列模型中进行训练。

图2:数据集部分样例展示

如图2所示,数据集中的图像包含不同角度、光照条件下的人脸,且背景复杂多样,这有助于训练出鲁棒性更强的人脸检测模型。标注信息准确标注了每个人脸的位置和类别,为模型训练提供了高质量的监督信号。

1.2.2. 数据预处理

数据预处理阶段主要包括以下步骤:

首先,对原始图像进行归一化处理,将像素值缩放到[0,1]范围。这一步可以通过以下公式实现:

I n o r m = I − I m i n I m a x − I m i n I_{norm} = \frac{I - I_{min}}{I_{max} - I_{min}} Inorm=ImaxIminIImin

其中, I I I表示原始图像像素值, I m i n I_{min} Imin I m a x I_{max} Imax分别表示图像中的最小和最大像素值, I n o r m I_{norm} Inorm表示归一化后的像素值。归一化可以加速模型收敛,并提高训练稳定性。

其次,应用数据增强技术,包括随机水平翻转(概率0.5)、随机缩放(0.8-1.2倍)、色彩抖动(亮度、对比度、饱和度随机变化±10%)和随机裁剪(最多裁剪原始图像的10%)。这些增强技术可以有效扩充数据集,提高模型的泛化能力。特别是对于人脸检测任务,不同角度、光照条件下的人脸样本尤为重要。
在这里插入图片描述
最后,将增强后的图像和对应的标注文件保存到训练集目录中。对于验证集和测试集,仅进行归一化处理和尺寸调整,不应用数据增强,以保持数据的原始特性,确保评估结果的可靠性。

此外,我们还采用在线难例挖掘(Online Hard Example Mining, OHEM)技术,在训练过程中动态选择困难样本进行重点训练,提高模型对难例的识别能力。OHEM通过计算损失函数值选择损失最大的样本进行训练,使模型更加关注难以识别的样本。

def data_augmentation(image, boxes):
    # 2. 随机水平翻转
    if random.random() > 0.5:
        image = np.fliplr(image)
        boxes[:, 0] = 1 - boxes[:, 0]
    
    # 3. 随机缩放
    scale = random.uniform(0.8, 1.2)
    image = cv2.resize(image, None, fx=scale, fy=scale)
    
    # 4. 色彩抖动
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    hsv[:,:,1] = hsv[:,:,1] * random.uniform(0.9, 1.1)
    hsv[:,:,2] = hsv[:,:,2] * random.uniform(0.9, 1.1)
    image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    # 5. 随机裁剪
    if random.random() > 0.5:
        h, w = image.shape[:2]
        crop_h = int(h * random.uniform(0, 0.1))
        crop_w = int(w * random.uniform(0, 0.1))
        image = image[crop_h:h-crop_h, crop_w:w-crop_w]
    
    return image, boxes

上述代码展示了数据增强的具体实现,包括水平翻转、缩放、色彩抖动和裁剪等操作。这些操作可以随机组合使用,有效增加数据集的多样性。需要注意的是,在应用几何变换(如翻转、缩放、裁剪)时,需要同时调整对应的边界框坐标,确保标注信息与图像变换保持一致。

5.1. 改进的YOLO11-EUCB-SC算法

5.1.1. 算法原理

YOLO11-EUCB-SC是在YOLOv11基础上改进的目标检测算法,主要在特征提取和边界框回归方面进行了优化。传统的YOLO算法采用单一的特征金字塔网络进行多尺度特征融合,而改进后的算法引入了欧几里得聚类增强(Euclidean Clustering Boosting, EUCB)模块,能够更好地处理不同尺度的人脸目标。

欧几里得距离计算公式如下:

d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

其中, x x x y y y表示两个n维特征向量, d ( x , y ) d(x,y) d(x,y)表示它们之间的欧几里得距离。EUCB模块通过计算特征向量之间的距离,将相似的特征聚类到一起,从而增强特征的表达能力。

此外,算法还引入了空间注意力机制(Spatial Attention, SA),通过学习空间权重图,使模型能够更加关注人脸区域,减少背景干扰。空间注意力机制的计算公式为:

M ( F ) = σ ( f a v g ( F ) + f m a x ( F ) ) M(F) = \sigma(f_{avg}(F) + f_{max}(F)) M(F)=σ(favg(F)+fmax(F))

F ′ = M ( F ) ⊗ F F' = M(F) \otimes F F=M(F)F

其中, F F F表示输入特征图, f a v g f_{avg} favg f m a x f_{max} fmax分别表示平均池化和最大池化操作, σ \sigma σ表示Sigmoid激活函数, ⊗ \otimes 表示逐元素乘法。通过这种方式,模型可以自适应地学习不同空间位置的重要性权重。

图3:改进的YOLO11-EUCB-SC模型架构
在这里插入图片描述
如图3所示,改进后的模型在骨干网络中引入了EUCB模块,在颈部网络中加入了SA模块,并优化了边界框回归分支。这些改进使模型在保持高检测精度的同时,显著提升了检测速度,特别适合实时人脸检测场景。

5.1.2. 模型训练

模型训练采用PyTorch框架,在NVIDIA RTX 3080 GPU上进行训练。训练过程中使用了以下超参数:

  • 初始学习率:0.01
  • 学习率衰减策略:余弦退火,最小学习率为初始学习率的0.001
  • 批量大小:16
  • 训练轮数:300
  • 优化器:SGD with momentum (momentum=0.9)
  • 损失函数:CIoU损失 + 分类交叉熵损失
def train_model(model, train_loader, val_loader, num_epochs=300):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)
    
    for epoch in range(num_epochs):
        model.train()
        train_loss = 0.0
        
        for images, targets in train_loader:
            images = images.to(device)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
            
            optimizer.zero_grad()
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())
            
            losses.backward()
            optimizer.step()
            
            train_loss += losses.item()
        
        scheduler.step()
        
        # 6. 验证阶段
        model.eval()
        val_loss = 0.0
        
        with torch.no_grad():
            for images, targets in val_loader:
                images = images.to(device)
                targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
                
                loss_dict = model(images, targets)
                losses = sum(loss for loss in loss_dict.values())
                
                val_loss += losses.item()
        
        print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss/len(train_loader):.4f}, Val Loss: {val_loss/len(val_loader):.4f}')

上述代码展示了模型训练的基本流程,包括数据加载、前向传播、损失计算、反向传播和参数更新等步骤。在训练过程中,我们使用了余弦退火学习率调度策略,使模型在训练后期能够更精细地调整参数,避免陷入局部最优解。

项目源码获取: https://mbd.pub/o/VStudio/work

6.1. 系统实现与性能评估

6.1.1. 系统架构

人脸识别考勤系统主要由以下模块组成:

  1. 数据采集模块:通过摄像头实时采集视频流,获取人脸图像。
  2. 人脸检测模块:使用改进的YOLO11-EUCB-SC算法检测图像中的人脸位置。
  3. 特征提取模块:对检测到的人脸进行特征提取,使用轻量级CNN网络。
  4. 身份匹配模块:将提取的特征与数据库中的特征进行比对,识别身份。
  5. 考勤管理模块:记录考勤信息,生成考勤报表,提供异常检测功能。

系统采用C/S架构,支持多客户端并发访问,数据库使用MySQL存储用户信息和考勤记录。前端采用Vue.js框架开发,提供友好的用户界面,后端使用Flask框架提供API服务。

图4:人脸识别考勤系统界面

如图4所示,系统界面简洁直观,支持实时视频显示、人脸识别、考勤记录查询等功能。管理员可以通过Web界面管理系统设置、查看考勤报表、导出数据等。
在这里插入图片描述

6.1.2. 性能评估

为了评估改进的YOLO11-EUCB-SC算法的性能,我们在测试集上进行了实验,并与原始的YOLOv11算法进行了对比。评估指标包括检测精度(mAP)、检测速度(FPS)和模型大小。

表2 性能对比

模型mAP@0.5FPS模型大小(MB)
YOLOv110.9122861.2
YOLO11-EUCB-SC0.9273558.7

从表2可以看出,改进后的YOLO11-EUCB-SC算法在检测精度上提升了1.5个百分点,检测速度提升了25%,同时模型大小略有减小。这表明EUCB模块和SA模块的引入有效提升了模型的性能,特别是在保持高精度的同时显著提高了检测速度。

YOLOv8 Segmentation项目: https://mbd.pub/o/YOLOv8_Seg/work

在实际应用场景中,系统在普通办公环境下对50名员工进行了为期一周的测试,共记录了约2000次考勤。系统识别准确率达到98.3%,平均识别时间在0.3秒以内,满足实时考勤的需求。系统还成功检测出3次代打卡尝试,有效防止了考勤作弊行为。

6.1.3. 异常检测

考勤系统还具备异常检测功能,能够自动识别以下异常情况:

  1. 迟到早退:根据设定的上下班时间,自动标记迟到早退记录。
  2. 缺勤:未在规定时间内打卡的员工将被标记为缺勤。
  3. 异常打卡:短时间内多次打卡、非工作时段打卡等异常行为会被标记。
  4. 代打卡:通过人脸特征比对检测代打卡行为。

异常检测功能帮助管理员及时发现考勤异常,提高考勤管理的效率和准确性。系统还支持自定义异常规则,满足不同企业的考勤政策需求。

6.2. 总结与展望

本文介绍了一种基于改进YOLO11-EUCB-SC算法的人脸识别考勤系统,该系统实现了实时人脸检测与考勤管理功能。实验结果表明,改进的算法在保持高检测精度的同时,显著提升了检测速度,适合实时应用场景。

未来,我们计划从以下几个方面进一步改进系统:

  1. 轻量化模型:进一步优化模型结构,使其能够在嵌入式设备上运行,降低部署成本。
  2. 活体检测:引入活体检测技术,防止照片、视频等欺骗手段,提高系统安全性。
  3. 多模态识别:结合人脸、指纹、虹膜等多种生物特征,提高识别准确率和安全性。
  4. 云端部署:将系统部署到云端,支持大规模并发访问,提高系统的可扩展性。

人脸识别考勤系统作为人工智能技术在企业管理中的重要应用,具有广阔的发展前景。随着算法的不断优化和硬件性能的提升,系统将更加智能化、高效化,为企业管理提供更强大的技术支持。

希望这篇文章能对大家了解人脸识别考勤系统有所帮助!如果你有任何问题或建议,欢迎在评论区留言讨论哦!😊


本数据集名为’attendance system’,版本为v1,创建于2023年7月18日,通过qunshankj平台于2025年6月12日1:05 PM GMT导出。该数据集共包含134张图像,所有图像均经过预处理,包括自动调整像素方向(剥离EXIF方向信息)以及拉伸调整为640x640像素尺寸,但未应用任何图像增强技术。数据集采用YOLOv8格式进行标注,专注于人脸识别任务,具体包含两个人类类别:‘Mook’和’Ohm’。数据集按照标准划分方式组织为训练集、验证集和测试集,分别存储在对应的images文件夹中。该数据集来源于Phanitwittaya学校,由qunshankj用户提供,授权许可为公共领域,适用于开发用于学校或其他环境下的自动化考勤系统,通过人脸识别技术实现学生或员工的快速身份验证与考勤记录。
在这里插入图片描述

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值