- 博客(27)
- 收藏
- 关注
原创 Arive-Dantu叶片识别系统:基于cascade-mask-rcnn_regnetx-400MF_fpn_ms-3x_coco模型实现_1
Arive-Dantu叶片识别系统摘要 本文介绍了一种基于cascade-mask-rcnn_regnetx-400MF_fpn_ms-3x_coco模型的Arive-Dantu叶片识别系统。该系统采用先进的深度学习架构,结合RegNetX-400MF骨干网络、特征金字塔网络(FPN)和Cascade R-CNN检测头,能够高效识别植物叶片。文章详细阐述了模型架构、数据集预处理(包含93张YOLOv8格式标注的图像)以及训练过程,包括数据增强、优化器设置等技术细节。该系统通过多尺度特征融合和级联检测机制,实
2025-12-17 13:51:39
919
原创 基于yolo13-C3k2-DBB的铝罐识别与分类系统
本文提出了一种基于改进YOLOv13的铝罐识别与分类系统,通过引入创新的C3k2-DBB模块和优化网络架构,显著提升了检测性能。针对铝罐的特殊反射特性和形状变化,系统采用动态分支选择机制和多尺度特征融合,有效解决了光照变化、遮挡等挑战。实验结果表明,相比基准算法,该系统在铝罐检测精度上提升15-25%,推理速度保持高效。创新性的动态anchor机制和分类损失优化进一步增强了模型对不同姿态和品牌铝罐的识别能力,为智能回收系统提供了可靠的技术方案。
2025-12-17 13:13:53
724
原创 海星目标检测改进——基于YOLOv8的HSPAN模型优化与实现
本文提出了一种基于YOLOv8的HSPAN改进模型,通过多层级空间-通道注意力机制优化海星目标检测。实验表明,该模型在自建海星数据集上mAP达到85.2%,较传统算法提升3.7%,尤其在复杂背景和小目标检测中表现突出。研究还探讨了不同光照条件下的鲁棒性,并采用Mixup、CutMix等数据增强策略提升泛化能力。该技术已成功集成至水下机器人系统,为海洋生态监测提供了高效解决方案。
2025-12-15 09:07:14
1023
原创 人脸识别考勤系统应用:基于改进YOLO11-EUCB-SC的实时人脸检测与考勤管理
本文提出了一种基于改进YOLO11-EUCB-SC算法的人脸识别考勤系统。该系统采用134张标注图像作为数据集,通过数据增强和预处理提升模型性能。改进算法引入了欧几里得聚类增强(EUCB)模块和空间注意力机制,优化了特征提取和边界框回归。训练采用PyTorch框架,使用SGD优化器和CIoU损失函数,在RTX 3080 GPU上完成300轮训练。系统实现了高精度实时人脸检测,适用于企业和学校的自动化考勤管理,相比传统方法显著提高了效率和准确性。
2025-12-15 08:34:35
593
原创 基于Faster R-CNN的桃黄病病害检测与分类系统实现_1
本文介绍了一种基于Faster R-CNN的桃黄病病害检测与分类系统。系统通过收集1000张桃树叶片和果实图像构建数据集,采用ResNet50作为骨干网络,结合区域提议网络和RoI Pooling层实现病害检测。训练过程采用数据增强和迁移学习策略,最终模型在测试集上达到92%精确率和89%召回率。系统可部署到边缘设备、云端或移动端,为果农提供便捷的病害诊断服务。未来将扩展多病害识别和时序分析功能,推动智慧农业发展。项目提供了完整的数据集、代码和教程资源供开发者参考。
2025-12-12 10:56:58
571
原创 工厂工人个人防护装备检测与识别:基于RPN-X101的算法实现与优化
本文详细介绍了基于RPN-X101的工厂工人个人防护装备检测与识别系统的实现与优化方法。通过改进特征提取网络、引入注意力机制、优化损失函数和实施轻量化策略,我们显著提升了模型在复杂工业环境中的检测性能和实用性。多模态融合:结合热成像、RGB等多种传感器数据,提高检测的可靠性自适应学习:引入在线学习机制,使模型能够适应不断变化的环境和PPE类型3D检测:扩展到3D空间检测,实现对工人姿态和PPE佩戴情况的更全面分析。
2025-12-12 10:23:15
562
原创 地铁站出口标志检测实战:基于YOLOV10n-v7DS的高效目标检测模型训练与部署指南
本文介绍了基于YOLOV10n-v7DS模型的地铁站出口标志检测系统。该系统通过改进的CSPDarknet主干网络和PANet特征融合结构,实现了高效准确的目标检测。研究详细阐述了数据收集与标注、模型训练优化及性能评估的全流程。实验结果表明,该系统在测试集上达到89.2%的mAP@0.5和45.2FPS的推理速度,能够适应不同光照条件下的检测需求。文章还探讨了模型在边缘设备上的部署优化策略,为智慧城市中的公共交通导航系统提供了实用解决方案。
2025-12-08 09:31:30
740
原创 草莓采摘机器人视觉识别系统:基于YOLO11-C3k2-ESC实现生熟草莓分类
本文提出了一种基于YOLO11-C3k2-ESC模型的草莓采摘机器人视觉识别系统。该系统通过改进的深度学习架构,实现了对生熟草莓的精准分类,准确率达95%以上。项目采用10,000张标注图像数据集,结合创新的数据增强方法提升模型鲁棒性。YOLO11-C3k2-ESC模型通过跨尺度特征融合和通道注意力机制,显著提升了小目标检测性能。训练过程采用迁移学习和余弦退火学习率策略,在200轮训练后获得最优模型。该系统将草莓采摘效率提升3-5倍,为智慧农业发展提供了有效解决方案。
2025-12-08 08:52:48
792
原创 城市环境多类别物体识别:雕像树木笼子气球检测与分类系统实现
本文提出了一种基于YOLOv12的城市环境多类别物体识别系统,专门针对雕像、树木、笼子和气球等城市常见物体进行优化检测。系统采用区域注意力机制降低计算复杂度,设计残差高效层聚合网络(R-ELAN)增强特征提取能力。实验表明,该系统在自建数据集上实现了55.4%的mAP,推理速度提升30%,参数减少15%。实际部署测试显示系统能适应不同光照条件,具备实时处理能力(>30 FPS)。该系统可应用于智慧城市管理、安防监控和城市规划等领域,未来将扩展更多物体类别并研究3D识别技术。
2025-12-07 20:31:24
914
原创 Mask_RCNN_X101-32x4d_FPN_1x_COCO_PCB阻焊层空洞缺陷检测项目详解
PCB阻焊层空洞缺陷检测数据集包含887张YOLOv8格式标注图像,专用于训练目标检测模型识别PCB阻焊层中的空洞缺陷('Void'类别)。所有图像经过标准化预处理(尺寸调整为640×640像素)和数据增强(50%概率水平/垂直翻转、四种90度旋转),增强模型泛化能力。数据集按CC BY 4.0协议发布,划分为训练集、验证集和测试集,适用于PCB制造质量控制的自动化检测场景。通过Mask R-CNN结合ResNeXt-101-32x4d_FPN网络实现高精度检测与分割,解决了传统人工检测效率低、易漏检的问题
2025-12-07 20:04:46
588
原创 基于FCOS_HRNetV2P-W40-GN-HEAD_MS的城市区域雷达与建筑识别系统
本文提出了一种基于FCOS_HRNetV2P-W40-GN-HEAD_MS模型的城市区域雷达与建筑识别系统。该系统融合FCOS目标检测算法和HRNetV2P骨干网络,通过GN归一化和多尺度检测头优化,实现了对城市建筑和雷达数据的高精度识别(准确率94.2%)。实验表明,该系统在Cityscapes、KITTI等数据集上表现优异(mAP 85.7%),已成功应用于城市规划辅助和灾害监测评估等实际场景,为智慧城市建设提供了有效的技术支持。🏙️📡🔍
2025-12-04 09:27:07
520
原创 基于YOLOv10的自然场景分类与目标检测实践指南:改进模型与优化训练流程_1
摘要: 本文系统分析了YOLO系列目标检测算法的演进历程,重点介绍了YOLOv10的核心改进。YOLOv10通过优化网络结构(如深度可分离卷积)、改进特征融合方法(自适应特征金字塔网络AFPN)及动态标签分配策略,显著提升了检测精度与推理速度。文章还提供了实践指南,包括数据集选择、标注工具推荐及划分方法(7:2:1比例),并展示了Python代码示例。YOLOv10n作为轻量级版本,兼顾性能与效率,适合资源受限设备的部署。整体内容涵盖理论创新与工程实践,为自然场景目标检测任务提供了全面参考。
2025-12-04 08:55:20
600
原创 【马铃薯病害检测】基于YOLO11-HGNetV2的智能识别系统实现_2
摘要:本文设计了一套马铃薯病害检测系统,采用分层架构(感知层、网络层、支撑层、应用层)实现全流程自动化检测。系统基于YOLO11-HGNetV2算法,支持四种病害识别(早疫病、晚疫病、Y病毒病及健康植株),通过PySide6框架构建可视化训练模块,包含数据集管理、多线程训练监控及组件化界面。数据集经预处理(尺寸归一化至640×640、数据增强)和严格验证,确保标注质量与类别平衡。系统特点包括实时文件监控、训练曲线可视化及农业专网适配,为精准病害识别与智能预警提供技术支持,可显著提升马铃薯种植的病害防控效率。
2025-12-02 09:30:20
911
原创 YOLO11模型在军用飞机目标检测中的应用:A-10雷电II与A400M运输机识别
本文研究了YOLO11模型在军用飞机目标检测中的应用,重点识别A-10雷电II攻击机和A400M运输机。通过构建包含1000张图像的数据集,采用多种数据增强技术优化模型训练。实验结果表明,改进后的YOLO11模型在mAP、精确率和召回率等指标上均优于YOLOv5/v7/v8版本,达到0.923的mAP@0.5和40FPS的推理速度。研究还探讨了模型量化、剪枝和TensorRT加速等优化方法,将推理速度提升6倍。该技术在边境监控、战场态势感知等军事领域具有重要应用价值,未来可结合多目标跟踪和多模态信息进一步提
2025-12-02 08:58:12
1031
原创 机械零件智能识别与分类系统研究:基于改进HTC模型的高精度检测方案
摘要:本研究提出了一种改进HTC模型的机械零件智能识别系统,通过优化混合任务级联机制和交错式处理策略,显著提升了检测精度。实验在M-Parts和Industrial-Mechanical-Parts数据集上进行,改进模型分别达到94.3%和88.5%的mAP,较原始HTC提升8.7%。消融实验验证了各模块的有效性,实际应用案例显示检测准确率提升至96%。该系统适用于工业自动化检测,具有较高的实用价值。
2025-12-01 18:24:55
976
原创 基于Cascade-Mask R-CNN和RegNetX的手写字母检测与识别系统实现_1
本文提出了一种基于Cascade-Mask R-CNN和RegNetX的手写字母检测与识别系统。该系统通过级联检测结构和高效的RegNetX网络,实现了对手写字母的准确定位和识别。实验结果表明,该方法在IAM等公开数据集上达到95.3%的mAP和92.7%的识别准确率,推理时间仅95ms,性能优于传统方法。通过模型压缩和量化等优化措施,系统可应用于文档数字化、表单处理等实际场景。未来将探索轻量化设计和跨域自适应方法,进一步提升系统在复杂场景中的泛化能力。
2025-12-01 17:57:30
1002
原创 基于改进Faster R-CNN的黄瓜病害检测与识别(含R50-Caffe-DC5模型训练与优化)_1
本文提出了一种改进的Faster R-CNN模型用于黄瓜病害检测,通过引入DC5模块(扩张卷积)优化网络结构,显著提升了小目标病害的识别能力。实验结果表明,改进后的R50-Caffe-DC5模型在mAP@0.5指标上达到86.7%,较原始Faster R-CNN提升7.5个百分点,尤其在小目标检测(AP值68.5%)方面表现突出。研究还开发了移动端应用和实时检测系统,为农业生产提供智能化病害识别解决方案。该模型在保持较高精度的同时具有较好的计算效率,适合实际部署应用。
2025-11-28 16:19:24
1018
原创 基于YOLO11-ConvNeXtV2的瓦楞纸箱缺陷检测与分类系统
本文全面解析目标检测技术,从YOLO系列到MMDetection框架。YOLOv8采用Anchor-Free设计和动态Head,实现高效检测;MMDetection提供模块化架构,支持50+种模型。文章对比了两阶段与单阶段检测器的特点,推荐了DETR和YOLOX等创新模型,并给出硬件适配建议。通过知识蒸馏等优化技术,可在精度与速度间取得平衡,满足工业检测、自动驾驶等场景需求。文中包含核心公式解析和代码示例,为开发者提供实用指导。
2025-11-28 15:52:10
890
原创 Yolo11-seg-LSCD_基于深度学习的树脂应用质量检测与分类系统
本文提出了一种基于改进YOLOv11-LSCD算法的树脂应用质量检测与分类系统。该系统通过引入LSCD(轻量级空间通道双重注意力)模块,显著提升了树脂制品缺陷检测的准确率。研究构建了包含5000张样本的专业数据集,涵盖气泡、裂纹等多种缺陷类型,并采用数据增强技术提升模型泛化能力。实验结果表明,该系统在工业环境中实现了高效、准确的实时检测,为树脂制品质量控制提供了智能化解决方案。未来研究将聚焦于扩大数据集规模、优化网络结构以及探索多模态融合技术,进一步提升系统性能。
2025-11-24 09:42:57
701
原创 建筑垃圾识别与分类:使用YOLO11-AFPN-P2345模型进行定制化训练与评估
本文介绍了一种基于YOLO11-AFPN-P2345模型的建筑垃圾智能识别与分类方法。研究使用包含5类建筑垃圾的1321张图像数据集,采用7:2:1比例划分为训练集、验证集和测试集。通过数据增强、标注质量检查等预处理步骤确保数据可靠性。模型采用多尺度训练策略(320×320至640×640随机尺寸)和AFPN结构实现特征融合,配合P2345注意力机制提升关键特征感知能力。实验表明,该方法能有效识别砖块、混凝土等建筑垃圾,为环保领域的智能分类处理提供了技术支持。
2025-11-23 22:42:21
51
原创 桑叶检测识别 _ 基于Faster R-CNN ResNet18 FPN模型的桑叶检测系统
本文介绍了基于Faster R-CNN ResNet18 FPN模型的桑叶检测系统,主要包含以下内容:1)构建包含5000张标注图像的桑叶数据集,采用数据增强技术提升模型泛化能力;2)选用轻量级ResNet18骨干网络结合FPN结构,通过Focal Loss和余弦退火学习率优化模型;3)系统在测试集上取得0.91 mAP值,实现92%精确率和89%召回率;4)开发了包含图像上传、检测执行和结果导出的图形界面系统。该系统可应用于农业生产、药材加工等领域,未来可扩展多目标检测和病虫害识别功能。
2025-11-21 21:40:42
21
原创 工业模具检测新突破:FCOS与HRNetV2P融合模型实战
工业模具检测领域迎来新突破!本文介绍了融合FCOS与HRNetV2P两大深度学习模型的创新系统,实现了对模具表面缺陷的高精度自动检测。该系统采用多层级融合策略,在特征、决策和后处理三个层面优化模型性能,平均mAP达到92.3%,比单模型提升4.7%。实验证明,该系统能有效识别0.1mm微小缺陷,检测速度达30FPS,已成功应用于汽车、家电和航空等领域,显著提升检测效率和产品质量。未来还将探索多模态融合等方向,进一步提升检测能力。
2025-11-21 21:15:38
55
原创 YOLO11-C3k2-RFAConv舌象健康状态分类识别模型_1
本文提出了一种基于改进YOLO11的舌象健康状态分类模型YOLO11-C3k2-RFAConv,通过引入C3k2模块增强特征提取能力,结合RFAConv注意力机制实现关键区域自适应关注。模型在10,000张舌象数据集上的实验表明,mAP@0.5达到92.3%,较原始YOLO11提升4.7%,推理速度保持39.8 FPS。该模型能有效识别舌质颜色、纹理和形态特征,为中医舌诊提供客观量化工具,已在临床应用中取得良好效果,辅助诊断效率提升60%以上。
2025-11-20 09:15:22
537
原创 基于YOLO11-ELA-HSFPN的列车悬挂部件检测系统实现
本研究提出了一种基于YOLO11-ELA-HSFPN的列车悬挂部件智能检测系统,通过引入增强型局部注意力(ELA)和层次化特征金字塔(HSFPN)模块,显著提升了检测性能。实验结果表明,改进模型在5000张列车悬挂部件图像数据集上达到92.3%的mAP0.5,比原版YOLO11提升4.7个百分点。系统已成功部署于地铁检修车间,检测准确率超过90%,有效提高了检测效率。未来工作将聚焦于模型轻量化、多模态融合等技术优化方向,为列车安全运行提供更智能化的保障方案。
2025-11-20 08:34:18
390
原创 【论文改进】YOLOv10n-SOEP-RFPN-MFM军用飞机目标检测
本文提出了一种改进的YOLOv10n军用飞机检测算法(YOLOv10n-SOEP-RFPN-MFM)。该算法引入空间-通道注意力机制(SOEP)、跨尺度特征融合模块(RFPN)和多尺度特征增强模块(MFM),显著提升了复杂战场环境下的检测性能。实验表明,改进模型在军用飞机数据集上达到95.7%的mAP,较基准模型提升6.2%,同时保持实时性(FPS 48.5)。研究还探讨了该技术在军事监控、战场态势感知等领域的应用前景,并开源了相关代码和数据集,为军用目标检测研究提供了重要参考。
2025-11-19 20:07:25
619
原创 【YOLO11】CARAFE改进关键点检测方法详解
本文介绍了如何利用CARAFE(上下文聚合和特征增强)模块改进YOLO11的关键点检测性能。CARAFE通过可学习的上采样核聚合局部上下文信息,相比传统方法能更好地保留细节特征。文中详细阐述了YOLO11的网络结构、CARAFE的工作原理及其数学表示,并提供了具体的实现代码和训练策略。实验结果表明,YOLO11+CARAFE在mAP指标上有明显提升(从0.823提高到0.856),虽然FPS略有下降(45降至42)。文章还给出了实际应用效果对比和常见问题解决方案,指出该方法尤其适用于关节模糊或存在遮挡的场景
2025-11-19 19:42:23
450
原创 基于BERTLSTMCRF深度学习识别模型医疗知识图谱问答可视化系统
本文介绍了一个基于BERT+LSTM+CRF深度学习模型的医疗知识图谱问答可视化系统。系统通过爬取医疗数据构建知识图谱,使用BERT进行语义理解,LSTM处理序列数据,CRF优化实体识别,实现智能问答功能。开发采用Django框架,结合Neo4j图数据库和Echarts可视化工具,最终构建了一个包含数据爬取、清洗、关系抽取、知识图谱建模及可视化展示的完整医疗问答系统。项目涉及深度学习、自然语言处理、知识图谱等多领域技术,为医疗领域提供了一套智能化的知识服务解决方案。
2025-10-13 20:12:12
932
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅