问题描述
有一个由n台计算机组成的无线网络。(n <= 1001),正常情况下,每台计算机都能跟与它距离不超过d的任何计算机通讯(d <= 20000)。地震发生了。所有的计算机都陷入瘫痪。专家们试着一台一台地修复计算机,以恢复整个无线网络。有时在修复的过程中,他们需要测试一下某两台计算机能否通讯(如果他们能通过别的正常的计算机进行通讯,也算他们之间可以通讯,即“能否通讯”可以是间接的)。
你的任务,就是模拟修复网络的过程,并回答“能否通讯”的询问。
输入
第一行两个整数,N和d,N表示计算机的数目,d表示两台计算机直接可直接通讯的最大距离。接下来的N行,每行两个整数Xi,Yi,表示每台计算机的坐标。接下来有许多行,每行都是一个操作(或者是修复操作,或者是询问操作)。
操作的格式如下:
O p (1 <= p <= N) 修复操作,表示修复编号为p的电脑;
S p q (1 <= p, q <= N) 询问操作,询问编号为p和编号为q的电脑能否通讯。
如果一台电脑尚未被修复,则它不能和任何电脑通讯。
输出
对于每个询问操作:如果能够通讯,输出一行SUCCESS;如果无法通讯,输出一行FAIL
样例输入
4 1
0 1
0 2
0 3
0 4
O 1
O 2
O 4
S 1 4
O 3
S 1 4
样例输出
FAIL
SUCCESS
算法讨论
对于每个修复操作进行连边,然后跑并查集。
#include <iostream>
#include <cstdio>
#include <math.h>
#include <cmath>
using namespace std;
#define maxn 4006
int point[maxn][3],f[maxn];
bool v[maxn];
double dis[maxn][maxn];
int n,d,p,q;
int sqr(int a)
{
return a*a;
}
int find(int x)
{
if (f[x]==x)
return x;
f[x]=find(f[x]);
return f[x];
}
int work(int x,int y)
{
int fx,fy;
fx=find(x);
fy=find(y);
if (fx!=fy)
f[fy]=fx;
return 0;
}
int main()
{
scanf("%d%d",&n,&d);
for (int i=1;i<=n;i++)
{
scanf("%d%d",&point[i][1],&point[i][2]);
for (int j=1;j<i;j++)
{
dis[i][j]=sqrt(sqr(point[i][1]-point[j][1])+sqr(point[i][2]-point[j][2]));
dis[j][i]=dis[i][j];
}
f[i]=i;
}
char c;
scanf("%c",&c);
while (~scanf("%c",&c))
{
if (c=='O')
{
scanf("%d",&p);
v[p]=1;
for (int i=1;i<=n;i++)
if (dis[p][i]<=d && v[i])
work(p,i);
}
else
{
scanf("%d%d",&p,&q);
if (find(p)==find(q) && v[p] && v[q])
printf("SUCCESS\n");
else
printf("FAIL\n");
}
scanf("%c",&c);
}
}