矩阵相乘,在宏观上是指两个矩阵进行乘法运算,微观上是指前一矩阵的一行和后一矩阵的一列对应的元素进行相乘然后汇总。
若在对应相乘的元素中,两个元素其中有一者为0,且在整个过程中一直保持着,那么最后对应到结果矩阵的位置上应该填写的元素应该是0.
若r(A)+r(B)>n,则根据抽屉/鸽巢原理必然存在A的某一行和B的某一列计算结果为非0,于是AB不等于零矩阵。
同时它的逆否命题也会成立。
即若AB=0,则r(A)+r(B)<=n
矩阵相乘,在宏观上是指两个矩阵进行乘法运算,微观上是指前一矩阵的一行和后一矩阵的一列对应的元素进行相乘然后汇总。
若在对应相乘的元素中,两个元素其中有一者为0,且在整个过程中一直保持着,那么最后对应到结果矩阵的位置上应该填写的元素应该是0.
若r(A)+r(B)>n,则根据抽屉/鸽巢原理必然存在A的某一行和B的某一列计算结果为非0,于是AB不等于零矩阵。
同时它的逆否命题也会成立。
即若AB=0,则r(A)+r(B)<=n