题目
Given a positive integer, output its complement number. The complement strategy is to flip the bits of its binary representation.
Note:
- The given integer is guaranteed to fit within the range of a 32-bit signed integer.
- You could assume no leading zero bit in the integer’s binary representation.
Example 1:
Input: 5 Output: 2 Explanation: The binary representation of 5 is 101 (no leading zero bits), and its complement is 010. So you need to output 2.
思路
1、很直白的一个思路就是 把整型数字转换为二进制形式,再将二进制数取反,但是要考虑到32位的二进制数除了将int目标数转换为二进制的低位 的左边的高位数上的0,因为这些0不能取反 不能作为结果计算进去;因此一开始我想到的是利用计算的方式(求余)得到对应二进制数再取反,最后得到结果。[很直白=_=所以效率也不高]
这里需要明白list中index从低到高存的是 二进制从右到左 的数,因此不需要改顺序。
我的代码
(27ms)
public int findComplement(int num) {
List<Integer> bit = new ArrayList<>();
int res = 0;
while(num !=0){
bit.add(num%2);
num /= 2;
}
//System.out.println("对应二进制:"+bit);
for(int i=0; i<bit.size(); i++){
if(bit.get(i)==1) bit.set(i,0);
else bit.set(i,1);
}
//System.out.println("取反后二进制:"+bit);
for(int i=0; i<bit.size(); i++){
if(bit.get(i)==1){
res += (int)Math.pow(2,i);
}
}
return res;
}
【讨论区答案1】
思路:
1、目标数对应二进制取反,但仅在最左边(LEFTMOST)的1开始位到最右边,取反
N位。
eg,num=5 (二进制表示为101),LEFTMOST位为1是从RIGHTMOST开始数(100,N = 3)的第三个。然后我们需要从RIGHTMOST翻转
3位,答案是010。为了达到上述算法,我们需要做3个步骤:
(1)从最右边RIGHTMOST数创建一个N位为1的掩码。 在上面的例子中,掩码是111. 我们可以使用体面的Java内置函数Integer.highestOneBit来获得LEFTMOST位1
[如上边的100],左移1,然后减1;
(2)目标数取反;
(3)将1和2的结果“&”运算。
[目标数取反后高位也变成了1,掩码是高位为0 从LEFTMOST 1开始后边均为1,因此相与过滤掉高位1 得到目标结果。]
代码:(13ms)
public int findComplement(int num) {
return ~num & ((Integer.highestOneBit(num)<<1) - 1 );
}
【讨论区答案2】
还有一个答案学习。原理:(12ms)
利用sum - 目标数 = 补数;如 num=5(101),利用(111)-(101)=(010)即2。
public int findComplement(int num) {
int i = 0;
int j = 0;
while (i < num)
{
i += Math.pow(2, j);
j++;
}
return i-num;
}
总结:
1【技巧】 掩码如何求?
利用Integer.highestOneBit(num)函数得到LEFTMOST 1开始的后边所有位均为0的N位数,再左移<<1,再减1。