题目大意是在第一象限中,每个流星i会在t_i时刻摧毁点(xi,yi)以及其上下左右的点,共5个点
Bessis从(0,0)开始跑,求Bessie跑到任意一个不会被摧毁的位置的最短时间。
这题的想法很巧妙
我们设map[x][y]为(x,y)被摧毁的时间,d[x][y]为到(x,y),初始值为INF,并且d[0][0]=0。
用输入的数据预处理出map数组,注意要取min,因为某个点可能会被炸很多次。
然后用BFS找最短路。设当前点为(x,y),下一步是(nx,ny)
如果这步可以走的话,应该满足如下关系:
nx >= 0 && ny >= 0 && d[x][y] + 1 < map[nx][ny] && d[nx][ny] == INF
其中d[nx][ny]==INF
是用来判重的
当找到任意一个map[x][y]为INF的点就说明已经安全了
另外,当mark[0][0]==0
时,说明起点在一开始就被炸了,直接输出-1
这个题还有个坑点…就是流星虽然只能炸到300 X 300的区域,但是Bessie可以走到第一象限的任何地方,所以MAXSIZE 开大点吧…
#include <queue>
#include <cstdio>
#include <climits>
#include <cstring>
#include <iostream>
#include <algorithm>
#define DEBUG(x) std::cerr<<#x<<"="<<x<<std::endl;
const int MAXM = 50000 + 1;
const int MAXSIZE = 1000 + 1;
const int INF = INT_MAX;
int n, m, map[MAXSIZE][MAXSIZE], d[MAXSIZE][MAXSIZE];
int x[MAXM], y[MAXM], t[MAXM];
const int dx[] = { 0, 1, 0, -1 };
const int dy[] = { 1, 0, -1, 0 };
std::queue<std::pair<int, int> > q;
void init() {
for (int i = 0; i < MAXSIZE; i++)
for (int j = 0; j < MAXSIZE; j++)
map[i][j] = INF, d[i][j] = INF;
for(int i=1; i<=m; i++) {
map[x[i]][y[i]] = std::min(map[x[i]][y[i]], t[i]);
for(int j=0; j<4; j++) {
int nx = x[i] + dx[j], ny = y[i] + dy[j];
if(nx >= 0 && ny >= 0) {
map[nx][ny] = std::min(map[nx][ny], t[i]);
}
}
}
}
int bfs() {
if(map[0][0] == 0) return -1;
q.push(std::make_pair(0, 0));
d[0][0] = 0;
while(!q.empty()) {
std::pair<int, int> ff = q.front(); q.pop();
int x = ff.first, y = ff.second;
if(map[x][y] == INF) {
return d[x][y];
}
for(int i=0; i<4; i++) {
int nx = x + dx[i], ny = y+dy[i];
if (nx >= 0 && ny >= 0 && d[x][y] + 1 < map[nx][ny] && d[nx][ny] == INF) {
q.push(std::make_pair(nx, ny));
d[nx][ny] = d[x][y] + 1;
}
}
}
return -1;
}
int main() {
scanf("%d", &m);
for(int i=1; i<=m; i++)
scanf("%d %d %d",&x[i],&y[i],&t[i]);
init();
printf("%d\n",bfs());
return 0;
}