Pytorch中nn.RNN()基本用法和输入输出

以下均为单向RNN。

0. RNN模型结构

网上教程的标准RNN结构如下图,其实是有输入层x、隐藏层h和输出层y三层结构的。

但是在Pytorch中定义的RNN,其实是没有y这个输出层的。例如下图中,Pytorch版本的两个输出,output=[h1, h2, h3, h4], hn = h4。如果想要得到输出层y,可以自行加一个全连接层。

1. 初始化RNN

rnn = nn.RNN(input_size, hidden_size, num_layers)

2. RNN的输入

  • input:(seq_len, batch_size, input_size)
  • h0:(num_layers, batch_s
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值