Python生成器

生成器***

生成器generator

  • 生成器指的是生成器对象,可以由生成器表达式得到,也可以使用 yield 关键字得到一个生成器函数,调用这个函数得到一个生成器对象
  • 生成器对象,是一个可迭代对象,是一个迭代器
  • 生成器对象,是延迟计算,惰性求值的
生成器函数
  • 函数体中包含 yield 语句的函数,就是生成器函数,调用后返回生成器对象
m = (i for i in range(5))
print(type(m))
print(next(m))
print(next(m))


def inc():
    for i in range(5):
        yield i
        
        
print(type(inc))
print(type(inc()))
g = inc()
print(type(g))
print(next(g))
for x in g:
    print(x)
print('------------')
for y in g:
    print(y)

普通函数调用,函数会立即执行直到执行完毕。

生成器函数调用,并不会立即执行函数体,而是需要使用 next 函数来驱动生成器函数执行后获得的生成器对象。

生成器表达式和生成器函数都可以得到生成器对象,只不过生成器函数可以写的更加复杂的逻辑。

生成器的执行

def gen():
    print('line 1')
    yield 1
    print('line 2')
    yield 2
    print('line 3')
    return 3
    yield 4
    
    
next(gen())   line 1
next(gen())	  line 1
g = gen()		
print(next(g))		line 1
print(next(g))		line 2
print(next(g))      StopIteration
print(next(g,'end'))		没有元素给个缺省值
  • 在生成器函数中,可以多次 yield,每执行一次 yield 后会暂停执行,把 yield 表达式的值返回
  • 再次执行会执行到下一次 yield 语句又会暂停执行
  • return 语句依然可以终止函数运行,但 return 语句的返回值不能被获取到
  • return 会导致当前函数返回,无法继续执行,也无法继续获取下一个值,抛出StopIteration 异常
  • 如果函数没有显式的 return 语句,如果生成器函数执行到结尾(相当于执行了 return None),一样会抛出 StopIteration 异常

生成器函数

  • 包含 yield 语句的生成器函数调用后,生成 生成器对象 的时候,生成器函数的函数体不会立即执行
  • next(generator) 会从函数的当前位置向后执行到之后碰到的第一个 yeild 语句,会弹出值,并暂停函数执行
  • 再次调用 next 函数,和上一条一样的处理过程
  • 继续调用 next 函数,生成器函数如果结束执行了(显式或隐式调用了 return 语句),会抛出 StopIteration 异常

生成器应用

1、无限循环

def counter():
    i = 0
    while True:
        i += 1
        yield i

c = counter()
print(next(c))   打印什么?   1
print(next(c))				2
print(next(c))				3

2、计数器

def inc():
    def counter():
        i = 0
        while True:
            i += 1
            yield i
    c = counter()
    return next(c)

print(inc())
print(inc())
print(inc())	打印什么?为什么?如何修改

修改上例

def inc():
    def counter():
        i = 0
        while True:
            i += 1
            yield i
    c = counter()
    return c

g = inc()
print(next(g))

可以用 g 记住inc函数return的 counter生成器函数生成的生成器对象,在 print 时来利用 next 拨动 g。
也可以:

def inc():
    def counter():
        i = 0
        while True:
            i += 1
            yield i
    c = counter()
    def inner():
        return next(c)
    return inner # return lambda :next(c)
    
foo = inc()
print(foo())

代码中的 inner 函数可以由 lambda表达式代替
3、斐波那契数列

def fib():
    x = 0
    y = 1 
    while True:
        yield y
        x,y = y,x+y

foo = fib()
for i in range(10):
    print(next(foo))

4、生成器交互
python 提供了一个和生成器对象交互的方法 send , 该方法可以和生成器沟通

def inc():
   def counter():
       i = 0
       while True:
           i += 1
           response = yield i 
           if response is not None:
               i = response
   c = counter()
   return lambda x=False : next(c) if not x else c.send(0)
   
foo = inc()
print(foo())
print(foo())
print(foo(True))
print(foo())
print(foo())
  • 调用 send方法,就可以吧 send 的实参传给 yield 语句做结果,这个结果可以在等式右边被赋值 给其他变量
  • send 和 next 一样可以推断生成器启动并执行

5、协程 Coroutine

  • 生成器的高级用法
  • 它比进程、线程轻量级,是在用户空间调度函数的一种实现
  • Python3 asyncio 就是协程实现,已经加入到标准库
  • Python3.5 使用 async、await 关键字直接原生支持协程
  • 协程调度器实现思路
    • 有2个生成器 A、B
    • next(A)后,A执行到了yield 语句暂停,然后去执行 next(B),B执行到了 yield 语句也暂停,然后再次调用 next(A) ,再调用 next(B) ,周而复始,就实现了调度的效果
    • 可以引入调度的策略来实现切换的方式
  • 协程是一种非抢占式调度

yield from 语法

从 Python 3.3 开始增加了 yield from 语法,使得yield from iterable等价于for item in iterable: yield item
yield from 就是一种简化语法的语法糖

def inc():
    for x in range(1000):
        yield x 
使用 yield from 简化

def inc():
    yield from range(1000)

foo = inc()
print(next(foo))
print(next(foo))
print(next(foo))

本质上 yield from 的意思就是,从 from 后面的可迭代对象中拿元素一个个 yield 出去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值