生成器***
生成器generator
- 生成器指的是生成器对象,可以由生成器表达式得到,也可以使用 yield 关键字得到一个生成器函数,调用这个函数得到一个生成器对象
- 生成器对象,是一个可迭代对象,是一个迭代器
- 生成器对象,是延迟计算,惰性求值的
生成器函数
- 函数体中包含 yield 语句的函数,就是生成器函数,调用后返回生成器对象
m = (i for i in range(5))
print(type(m))
print(next(m))
print(next(m))
def inc():
for i in range(5):
yield i
print(type(inc))
print(type(inc()))
g = inc()
print(type(g))
print(next(g))
for x in g:
print(x)
print('------------')
for y in g:
print(y)
普通函数调用,函数会立即执行直到执行完毕。
生成器函数调用,并不会立即执行函数体,而是需要使用 next 函数来驱动生成器函数执行后获得的生成器对象。
生成器表达式和生成器函数都可以得到生成器对象,只不过生成器函数可以写的更加复杂的逻辑。
生成器的执行
def gen():
print('line 1')
yield 1
print('line 2')
yield 2
print('line 3')
return 3
yield 4
next(gen()) line 1
next(gen()) line 1
g = gen()
print(next(g)) line 1
print(next(g)) line 2
print(next(g)) StopIteration
print(next(g,'end')) 没有元素给个缺省值
- 在生成器函数中,可以多次 yield,每执行一次 yield 后会暂停执行,把 yield 表达式的值返回
- 再次执行会执行到下一次 yield 语句又会暂停执行
- return 语句依然可以终止函数运行,但 return 语句的返回值不能被获取到
- return 会导致当前函数返回,无法继续执行,也无法继续获取下一个值,抛出StopIteration 异常
- 如果函数没有显式的 return 语句,如果生成器函数执行到结尾(相当于执行了 return None),一样会抛出 StopIteration 异常
生成器函数
- 包含 yield 语句的生成器函数调用后,生成 生成器对象 的时候,生成器函数的函数体不会立即执行
- next(generator) 会从函数的当前位置向后执行到之后碰到的第一个 yeild 语句,会弹出值,并暂停函数执行
- 再次调用 next 函数,和上一条一样的处理过程
- 继续调用 next 函数,生成器函数如果结束执行了(显式或隐式调用了 return 语句),会抛出 StopIteration 异常
生成器应用
1、无限循环
def counter():
i = 0
while True:
i += 1
yield i
c = counter()
print(next(c)) 打印什么? 1
print(next(c)) 2
print(next(c)) 3
2、计数器
def inc():
def counter():
i = 0
while True:
i += 1
yield i
c = counter()
return next(c)
print(inc())
print(inc())
print(inc()) 打印什么?为什么?如何修改
修改上例
def inc():
def counter():
i = 0
while True:
i += 1
yield i
c = counter()
return c
g = inc()
print(next(g))
可以用 g 记住inc函数return的 counter生成器函数生成的生成器对象,在 print 时来利用 next 拨动 g。
也可以:
def inc():
def counter():
i = 0
while True:
i += 1
yield i
c = counter()
def inner():
return next(c)
return inner # return lambda :next(c)
foo = inc()
print(foo())
代码中的 inner 函数可以由 lambda表达式代替
3、斐波那契数列
def fib():
x = 0
y = 1
while True:
yield y
x,y = y,x+y
foo = fib()
for i in range(10):
print(next(foo))
4、生成器交互
python 提供了一个和生成器对象交互的方法 send , 该方法可以和生成器沟通
def inc():
def counter():
i = 0
while True:
i += 1
response = yield i
if response is not None:
i = response
c = counter()
return lambda x=False : next(c) if not x else c.send(0)
foo = inc()
print(foo())
print(foo())
print(foo(True))
print(foo())
print(foo())
- 调用 send方法,就可以吧 send 的实参传给 yield 语句做结果,这个结果可以在等式右边被赋值 给其他变量
- send 和 next 一样可以推断生成器启动并执行
5、协程 Coroutine
- 生成器的高级用法
- 它比进程、线程轻量级,是在用户空间调度函数的一种实现
- Python3 asyncio 就是协程实现,已经加入到标准库
- Python3.5 使用 async、await 关键字直接原生支持协程
- 协程调度器实现思路
- 有2个生成器 A、B
- next(A)后,A执行到了yield 语句暂停,然后去执行 next(B),B执行到了 yield 语句也暂停,然后再次调用 next(A) ,再调用 next(B) ,周而复始,就实现了调度的效果
- 可以引入调度的策略来实现切换的方式
- 协程是一种非抢占式调度
yield from 语法
从 Python 3.3 开始增加了 yield from 语法,使得yield from iterable
等价于for item in iterable: yield item
yield from 就是一种简化语法的语法糖
def inc():
for x in range(1000):
yield x
使用 yield from 简化
def inc():
yield from range(1000)
foo = inc()
print(next(foo))
print(next(foo))
print(next(foo))
本质上 yield from 的意思就是,从 from 后面的可迭代对象中拿元素一个个 yield 出去。