字符串 str 类型的详细解析和实际应用场景

本文主要用于个人学习

1. 基本定义

  • str 是 Python 的核心数据类型,用于表示由字符组成的序列。

  • # 使用单引号、双引号或三引号定义
    s1 = 'He said "Hi!"'
    s2 = "It's easy"
    s3 = '''Hello,
    This is a multi-line
    string.'''

2. 核心特性

(1) 不可变性(Immutable)
  • 字符串一旦创建,内容不可直接修改,但可生成新字符串。

    s = "Python"
    s[0] = "J"  # 报错!不允许原地修改
    new_s = "J" + s[1:]  # 正确:生成新字符串 "Jython"

(2) 支持索引和切片 

text = "Hello World"
print(text[0])     # 输出 'H'
print(text[6:11])  # 输出 'World'
(3) 常用方法
# 大小写转换
"Hello".lower()       # "hello"
"world".upper()       # "WORLD"

# 分割与拼接
"a,b,c".split(",")    # ["a", "b", "c"]
"-".join(["2023", "08", "01"])  # "2023-08-01"

# 格式化(f-string)
name = "Alice"
age = 25
info = f"{name} is {age} years old."  # "Alice is 25 years old."

3. 与其他数据类型的转换

(1) 转字符串

num = 123
str_num = str(num)  # "123"

lst = [1, 2, 3]
str_lst = str(lst)  # "[1, 2, 3]"
(2) 字符串转其他类型
s = "456"
num = int(s)        # 456 (整数)
pi = float("3.14")  # 3.14 (浮点数)

# 注意:转换失败会抛出 ValueError
try:
    invalid = int("123a")
except ValueError as e:
    print(f"错误: {e}") 

4. 在数据科学中的特殊场景

(1) Pandas 中的字符串类型

默认情况下,Pandas 的文本列类型为 object,但可显式指定为 string(需 Pandas 1.0+):

import pandas as pd
df = pd.DataFrame({"text": ["apple", "banana"]}, dtype="string")
(2) NumPy 的字符串数组
import numpy as np
arr = np.array(["a", "bb", "ccc"], dtype=np.str_)

5. 常见问题与解决

(1) 类型错误(TypeError)

不同数据类型混用

# 错误示例:字符串与数值直接拼接
age = 25
msg = "Age: " + age  # 报错!需转换为字符串
# 正确写法
msg = "Age: " + str(age)

(2) 文件读取时的字符串处理

# 从 CSV 读取的数值可能被识别为字符串
with open("data.csv") as f:
    value = f.read().strip()  # 假设内容为 "123"
    num = int(value)          # 转换为整数

6. 总结

str 是 Python 中处理文本的核心工具,定义文本;类型转换;数据科学处理;错误处理等场景均有应用,掌握其特性和方法对开发至关重要!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值