本文主要用于个人学习
1. 基本定义
-
str
是 Python 的核心数据类型,用于表示由字符组成的序列。 -
# 使用单引号、双引号或三引号定义 s1 = 'He said "Hi!"' s2 = "It's easy" s3 = '''Hello, This is a multi-line string.'''
2. 核心特性
(1) 不可变性(Immutable)
-
字符串一旦创建,内容不可直接修改,但可生成新字符串。
s = "Python" s[0] = "J" # 报错!不允许原地修改 new_s = "J" + s[1:] # 正确:生成新字符串 "Jython"
(2) 支持索引和切片
text = "Hello World"
print(text[0]) # 输出 'H'
print(text[6:11]) # 输出 'World'
(3) 常用方法
# 大小写转换
"Hello".lower() # "hello"
"world".upper() # "WORLD"
# 分割与拼接
"a,b,c".split(",") # ["a", "b", "c"]
"-".join(["2023", "08", "01"]) # "2023-08-01"
# 格式化(f-string)
name = "Alice"
age = 25
info = f"{name} is {age} years old." # "Alice is 25 years old."
3. 与其他数据类型的转换
(1) 转字符串
num = 123
str_num = str(num) # "123"
lst = [1, 2, 3]
str_lst = str(lst) # "[1, 2, 3]"
(2) 字符串转其他类型
s = "456"
num = int(s) # 456 (整数)
pi = float("3.14") # 3.14 (浮点数)
# 注意:转换失败会抛出 ValueError
try:
invalid = int("123a")
except ValueError as e:
print(f"错误: {e}")
4. 在数据科学中的特殊场景
(1) Pandas 中的字符串类型
默认情况下,Pandas 的文本列类型为 object
,但可显式指定为 string
(需 Pandas 1.0+):
import pandas as pd
df = pd.DataFrame({"text": ["apple", "banana"]}, dtype="string")
(2) NumPy 的字符串数组
import numpy as np
arr = np.array(["a", "bb", "ccc"], dtype=np.str_)
5. 常见问题与解决
(1) 类型错误(TypeError)
不同数据类型混用
# 错误示例:字符串与数值直接拼接
age = 25
msg = "Age: " + age # 报错!需转换为字符串
# 正确写法
msg = "Age: " + str(age)
(2) 文件读取时的字符串处理
# 从 CSV 读取的数值可能被识别为字符串
with open("data.csv") as f:
value = f.read().strip() # 假设内容为 "123"
num = int(value) # 转换为整数
6. 总结
str
是 Python 中处理文本的核心工具,定义文本;类型转换;数据科学处理;错误处理等场景均有应用,掌握其特性和方法对开发至关重要!