树形DP(基础篇)—— Anniversary Party ( HDU 1520 )

1.先建立结构体,以每个关系为单位,关系的序号为下标,里面包括这条关系里的父亲,与下一个同级关系的序号

struct node
{
    int v;
    int next;
}People[/*总关系数*/];

2.然后开始把每一条关系加进去

void ADD (int u, int v)
{
    People[e].v = v;   //父亲的序号v
    People[e].next = head[u];  //head数组存放的是儿子的下标指向的第一个父亲的关系序号,这里存放的就是当前父亲
    head[u] = e ++;  //更新关系下标的值:如果一个儿子有多个父亲的话,head数组能保存最新父亲的关系的序号,而旧的父亲的关系序号则存放再next里。
}

3.这是DFS搜索:

int DFS (int u)
{
    visit[u] = 1;//表示已经搜索过这个儿子
    dp[u][0] = 0;//u不去的最大值
    dp[u][1] = val[u];//u去的最大值
    for (int i = head[u]; i != -1; i = People[i].next)//先找u最新的父亲的关系序号,然后换成u下一个父亲的关系序号
    {
        int v = People[i].v;   //得到这个关系序号里的父亲的值
        DFS(v); //再搜索它的父亲
        dp[u][0] += max(dp[v][0],  dp[v][1]);  //儿子不去的值 = max(父亲不去的值,父亲去的值)
        dp[u][1] += dp[v][0]; //儿子去的值 = 它加上父亲不去的值
    }
    return max(dp[u][0], dp[u][1]); 返回儿子去和不去的值中最大的
}
  • AC代码:
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <iostream>

using namespace std;

#define N 6666
int dp[N][2], val[N], visit[N];
int fa[N];
struct node
{
    int v;
    int next;
}People[N<<1];

int e, head[N];
void init ()
{
    memset  (head, -1, sizeof (head));
    e = 1;
}
void ADD (int u, int v)
{
    People[e].v = v;
    People[e].next = head[u];
    head[u] = e ++;
}
int DFS (int u)
{
    visit[u] = 1;
    dp[u][0] = 0;
    dp[u][1] = val[u];
    for (int i = head[u]; i != -1; i = People[i].next)
    {
        int v = People[i].v;
        DFS(v);
        dp[u][0] += max(dp[v][0],  dp[v][1]);
        dp[u][1] += dp[v][0];
    }
    return max(dp[u][0], dp[u][1]);
}

int main()
{
    int n, v, u;
    while (scanf ("%d", &n) != EOF)
    {
        init();
        for (int i = 1; i <= n; ++i)
        {
            fa[i] = 0;
            visit[i] = 0;
            scanf ("%d", &val[i]);
        }
        while (scanf ("%d%d", &v, &u) && v + u != 0)
        {
            ADD (u, v);
            fa[v]++;
        }
        int ans = 0;
        for (int i = 1; i <= n; ++i)
        {
            if(!fa[i])
                ans += DFS(i);
        }
        //for(int i=1;i<=e;i++)
        //  cout << i << ":" << head[i] << "---" <<People[head[i]].next<< endl;
        printf("%d\n", ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值