最小割——POJ 3469

  • 题目链接: http://poj.org/problem?id=3469

  • 题意: 给出A,B两个内核,给出N个进程,每个进程在不同的内核花费不一样,再给出M个任务,每个任务是a,b两个进程在交换数据,如果在同一内核就不需要额外花费,如果在不同内核则需要额外花费。求N个进程都跑起来并且满足M个任务的条件下的最小花费。

  • 分析: 先不考虑M个任务,我们发现每个进程要么属于A,要么属于B,我们可以类比网络流里的S集合和T集合,那么我们从源点向每个进程建边,容量为Ai;从每个进程向汇点建边,容量为Bi,那么最小割恰好也就是每个进程划分好的最小花费:从源点跑到汇点,每个进程的流量都是最小的那个,所以最终就是最小花费。然后再这个基础上,M个任务的建边就是在a,b两个进程间再建一条容量为c的边,相当于强行扩大了原来网络流的流量:如果之前所有满边都在同一个集合的话,这些新加的边不会对最大流量(即等同最大花费)产生影响,但如果这条边所连的两个进程在不同的集合中的话,这条相当于又给没跑满的边增加了出路:即增加了流量(增加了花费)。在这样建边的情况下,最后划分出来的两个集合得到的最小割就一定是最小花费了。

  • 图示:
    如果没有交换数据的任务进程,我们发现最小花费的边限制了流量,即最终跑出的最大流就是整体的最小花费:200+300=500
    这里写图片描述
    如果我们在b,c进程间添加一个数据交换的任务,花费为800,即建了一条容量为800的双向边。这样之前S->b没有跑满的边,又可以通过b->c跑出新的流量,直到跑满b->T,c->T,相当于b,c在同一个集合了,且得到最大流量也就是最小花费:200+300+200=700。
    这里写图片描述

  • AC代码:

/*************************************************************************
    > File Name: test.cpp
    > Author: Akira 
    > Mail: qaq.febr2.qaq@gmail.com 
 ************************************************************************/

#include <iostream>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <set>
#include <list>
#include <ctime>
#include <climits>
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
using namespace std;

#define MaxN 200010
#define MaxM MaxN*44
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
const int mod = 1E9+7;
const double eps = 1e-6;
#define bug cout<<88888888<<endl;
#define debug(x) cout << #x" = " << x;

struct Edge{
    int u,v,next;
    int flow;
}edge[MaxM];   //最大边数,一般都是实际边数的2倍甚至以上

int head[MaxN];
int cont;

void init(){        //记得init
    cont = 0;
    MST(head, -1);

}

void add(int u, int v, int flow){
    edge[cont].u = u;
    edge[cont].v = v;
    edge[cont].flow = flow;
    edge[cont].next = head[u];
    head[u] = cont++;
}

void Add(int u, int v, int flow){    //建正反两条边,反向流量为0
    add(u, v, flow);
    add(v, u, 0);
}

int dis[MaxN];
int num[MaxN];
int cur[MaxN];
int pre[MaxN];

void BFS(int source,int sink)
{
    queue<int>q;
    CLR(num);
    MST(dis,-1);

    q.push(sink);
    dis[sink]=0;
    num[0]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v = edge[i].v;
            if(dis[v] == -1)
            {
                dis[v] = dis[u] + 1;
                num[dis[v]]++;
                q.push(v);
            }
        }
    }
}

int ISAP(int source,int sink,int n)      //从源点到汇点,n为总点数,返回最大流
{
    memcpy(cur,head,sizeof(cur));
    int flow=0, u = pre[source] = source;
    BFS( source,sink);
    while( dis[source] < n )
    {
        if(u == sink)
        {
            int df = INF, pos;
            for(int i =source;i != sink;i = edge[cur[i]].v)
            {
                if(df > edge[cur[i]].flow)
                {
                    df = edge[cur[i]].flow;
                    pos = i;
                }
            }
            for(int i = source;i != sink;i = edge[cur[i]].v)
            {
                edge[cur[i]].flow -= df;
                edge[cur[i]^1].flow += df;
            }
            flow += df;
            //cout << flow << endl;
            u = pos;
        }
        int st;
        for(st = cur[u];st != -1;st = edge[st].next)
        {
            if(dis[edge[st].v] + 1 == dis[u] && edge[st].flow)
            {
                break;
            }
        }
        if(st != -1)
        {
            cur[u] = st;
            pre[edge[st].v] = u;
            u = edge[st].v;
        }
        else
        {
            if( (--num[dis[u]])==0 ) break;
            int mind = n;
            for(int id = head[u];id != -1;id = edge[id].next)
            {
                if(mind > dis[edge[id].v] && edge[id].flow != 0)
                {
                    cur[u] = id;
                    mind = dis[edge[id].v];
                }
            }
            dis[u] = mind+1;
            num[dis[u]]++;
            if(u!=source)
            u = pre[u];
        }
    }
    return flow;
}
int N,M;
int main()
{
    //std::ios::sync_with_stdio(false);
    while(~scanf("%d%d", &N, &M))
    {
        init();
        int s = 0, t=N+1;
        for(int i=1;i<=N;i++) 
        {
            int x,y;
            scanf("%d%d", &x, &y);
            Add(s,i,x);
            Add(i,t,y);
        }
        while(M--)
        {
            int a,b,c;
            scanf("%d%d%d", &a, &b, &c);
            Add(a,b,c);
            Add(b,a,c);
        }
        cout << ISAP(s,t,N+1) << endl;
    }
    //system("pause");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值