题意: 给出A,B两个内核,给出N个进程,每个进程在不同的内核花费不一样,再给出M个任务,每个任务是a,b两个进程在交换数据,如果在同一内核就不需要额外花费,如果在不同内核则需要额外花费。求N个进程都跑起来并且满足M个任务的条件下的最小花费。
分析: 先不考虑M个任务,我们发现每个进程要么属于A,要么属于B,我们可以类比网络流里的S集合和T集合,那么我们从源点向每个进程建边,容量为Ai;从每个进程向汇点建边,容量为Bi,那么最小割恰好也就是每个进程划分好的最小花费:从源点跑到汇点,每个进程的流量都是最小的那个,所以最终就是最小花费。然后再这个基础上,M个任务的建边就是在a,b两个进程间再建一条容量为c的边,相当于强行扩大了原来网络流的流量:如果之前所有满边都在同一个集合的话,这些新加的边不会对最大流量(即等同最大花费)产生影响,但如果这条边所连的两个进程在不同的集合中的话,这条相当于又给没跑满的边增加了出路:即增加了流量(增加了花费)。在这样建边的情况下,最后划分出来的两个集合得到的最小割就一定是最小花费了。
图示:
如果没有交换数据的任务进程,我们发现最小花费的边限制了流量,即最终跑出的最大流就是整体的最小花费:200+300=500
如果我们在b,c进程间添加一个数据交换的任务,花费为800,即建了一条容量为800的双向边。这样之前S->b没有跑满的边,又可以通过b->c跑出新的流量,直到跑满b->T,c->T,相当于b,c在同一个集合了,且得到最大流量也就是最小花费:200+300+200=700。
AC代码:
/*************************************************************************
> File Name: test.cpp
> Author: Akira
> Mail: qaq.febr2.qaq@gmail.com
************************************************************************/
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <algorithm>
#include <bitset>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <set>
#include <list>
#include <ctime>
#include <climits>
typedef long long LL;
typedef unsigned long long ULL;
typedef long double LD;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
using namespace std;
#define MaxN 200010
#define MaxM MaxN*44
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
const int mod = 1E9+7;
const double eps = 1e-6;
#define bug cout<<88888888<<endl;
#define debug(x) cout << #x" = " << x;
struct Edge{
int u,v,next;
int flow;
}edge[MaxM]; //最大边数,一般都是实际边数的2倍甚至以上
int head[MaxN];
int cont;
void init(){ //记得init
cont = 0;
MST(head, -1);
}
void add(int u, int v, int flow){
edge[cont].u = u;
edge[cont].v = v;
edge[cont].flow = flow;
edge[cont].next = head[u];
head[u] = cont++;
}
void Add(int u, int v, int flow){ //建正反两条边,反向流量为0
add(u, v, flow);
add(v, u, 0);
}
int dis[MaxN];
int num[MaxN];
int cur[MaxN];
int pre[MaxN];
void BFS(int source,int sink)
{
queue<int>q;
CLR(num);
MST(dis,-1);
q.push(sink);
dis[sink]=0;
num[0]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v = edge[i].v;
if(dis[v] == -1)
{
dis[v] = dis[u] + 1;
num[dis[v]]++;
q.push(v);
}
}
}
}
int ISAP(int source,int sink,int n) //从源点到汇点,n为总点数,返回最大流
{
memcpy(cur,head,sizeof(cur));
int flow=0, u = pre[source] = source;
BFS( source,sink);
while( dis[source] < n )
{
if(u == sink)
{
int df = INF, pos;
for(int i =source;i != sink;i = edge[cur[i]].v)
{
if(df > edge[cur[i]].flow)
{
df = edge[cur[i]].flow;
pos = i;
}
}
for(int i = source;i != sink;i = edge[cur[i]].v)
{
edge[cur[i]].flow -= df;
edge[cur[i]^1].flow += df;
}
flow += df;
//cout << flow << endl;
u = pos;
}
int st;
for(st = cur[u];st != -1;st = edge[st].next)
{
if(dis[edge[st].v] + 1 == dis[u] && edge[st].flow)
{
break;
}
}
if(st != -1)
{
cur[u] = st;
pre[edge[st].v] = u;
u = edge[st].v;
}
else
{
if( (--num[dis[u]])==0 ) break;
int mind = n;
for(int id = head[u];id != -1;id = edge[id].next)
{
if(mind > dis[edge[id].v] && edge[id].flow != 0)
{
cur[u] = id;
mind = dis[edge[id].v];
}
}
dis[u] = mind+1;
num[dis[u]]++;
if(u!=source)
u = pre[u];
}
}
return flow;
}
int N,M;
int main()
{
//std::ios::sync_with_stdio(false);
while(~scanf("%d%d", &N, &M))
{
init();
int s = 0, t=N+1;
for(int i=1;i<=N;i++)
{
int x,y;
scanf("%d%d", &x, &y);
Add(s,i,x);
Add(i,t,y);
}
while(M--)
{
int a,b,c;
scanf("%d%d%d", &a, &b, &c);
Add(a,b,c);
Add(b,a,c);
}
cout << ISAP(s,t,N+1) << endl;
}
//system("pause");
}