2023-07-21力扣每日一题

文章讲述了如何利用优先队列和滑动窗口策略解决一个涉及二维数组和不等式的最大值计算问题。通过调整优先队列的排序规则,找到最大值的关键在于选取具有最大(points[i][1]-points[i][0])的元素。代码示例展示了具体实现过程。
摘要由CSDN通过智能技术生成

链接:

1499. 满足不等式的最大值

题意:

一个整数二维数组points和一个非负整数k,当i<jpoints[i][0]<points[j][0]

在条件 abs(points[i][0] - points[j][0]) <= k

max( points[i][1] + points[j][1] + abs(points[i][0] - points[j][0]) )

解:

又是优先队列啊,这边先看条件abs(points[i][0] - points[j][0]) <= k,由于数组points本身含有规则当i<jpoints[i][0]<points[j][0],即按照第一维递增,那么abs(points[i][0] - points[j][0]) = points[j][0]-points[i][0],即points[j][0]-points[i][0] <= k,指j 和 i 的第一维差小于等于K

也就是说,对于任意一个 j 符合条件points[j][0]-points[i][0] <= k的范围[i,j]一定连续的,那么如果[0,i]不是 j 的合法区间那也不会是 j+1、j+2…的合法区间

那么当 j 增大时,我们只需要将前面不合法的 i 剔除 ,直到遇到一个合法的 i 停下 ,就能保证新的[i,j]对于新的 j 合法,类似滑动窗口,我们就先把这个合法区间内的所有数组存入优先队列

但是我们需要找到最大的points[i][1] + points[j][1] + points[j][0] - points[i][0] )基本上,对于这个 j 来说,在它的合法区间内要找最大的points[i][1]和最小的points[i][0]

我先了写了一个按照points[i][1]从大到小排序,在其上points[i][0]从小到大排序的优先队列,跑到了WA(64/66)

案例设置了[13,17]以及他的合法区间[2,-2]和[10,3],如果按照points[i][1]优先,就是选择[10,3],算出来得到23,选择[2,-2]则可以得到26,这很好理解,points[i][1]points[i][0]并没有一个优先级

那么我们研究一下points[i][1] + points[j][1] + points[j][0] - points[i][0] ),可以将他转化为 (points[j][1] + points[j][0]) + (points[i][1] - points[i][0])

这样就可以看出我们只需要在合法区间[i,j]找一个最大的(points[i][1] - points[i][0])出来就可以了,所以优先队列按照(points[i][1] - points[i][0])从大到小排序,然后在其上points[i][0]从小到大排序的优先队列,因为还需要在 j 变大,合法区间更新后,计算答案时排除掉对新的 j 不合法的 i

答案(points[i][1] - points[i][0])的优先级最高,在其基础上选择合法答案

实际代码:

#include<bits/stdc++.h>
using namespace std;
struct cmp1
{
    bool operator() (const vector<int>& L,const vector<int>& R)
    {
        if(L[1]==R[1]) return L[0]>R[0];//X要小 
        else return L[1]<R[1];//Y要大 
    }
};
int findMaxValueOfEquation(vector<vector<int>>& points, int k)
{
    priority_queue<vector<int>,vector<vector<int>>,cmp1>p_q;
    int lg=points.size(),l=0,ans=INT_MIN;

    for(int i=1;i<lg;i++)
    {
        while (l<i && abs(points[i][0]-points[l][0])>k ) l++;
        while (l<i)
        {
            p_q.push(vector<int>{points[l][0],points[l][1]-points[l][0]});
            l++;
        }
        
        while(!p_q.empty())
        {
            vector<int> temp=p_q.top();
            //cout<<"top:"<<temp[0]<<" "<<temp[1]<<" ans:"<<ans<<endl;
            if( abs(points[i][0]-temp[0])>k ) p_q.pop();
            else
            {
                ans=max(ans,temp[1]+points[i][1]+points[i][0]);
                break;
            }
        }
    }
    return ans;
}
int main()
{
    int k,a,b;cin>>k; 
    vector<vector<int>> points;
    
    while(cin>>a>>b)
    {
        vector<int> point{a,b};
        points.push_back(point);
    }
    
    int ans=findMaxValueOfEquation(points,k);
    cout<<ans<<endl;
    return 0;
}

限制:

  • 2 <= points.length <= 10^5
  • points[i].length == 2
  • -10^8 <= points[i][0], points[i][1] <= 10^8
  • 0 <= k <= 2 * 10^8
  • 对于所有的1 <= i < j <= points.length ,points[i][0] < points[j][0] 都成立。也就是说,xi 是严格递增的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值