链接:
题意:
一个整数二维数组points和一个非负整数k,当i<j
时points[i][0]<points[j][0]
在条件 abs(points[i][0] - points[j][0]) <= k
下
求max( points[i][1] + points[j][1] + abs(points[i][0] - points[j][0]) )
解:
又是优先队列啊,这边先看条件abs(points[i][0] - points[j][0]) <= k
,由于数组points本身含有规则当i<j
时points[i][0]<points[j][0]
,即按照第一维递增,那么abs(points[i][0] - points[j][0]) = points[j][0]-points[i][0]
,即points[j][0]-points[i][0] <= k
,指j 和 i 的第一维差小于等于K
也就是说,对于任意一个 j 符合条件points[j][0]-points[i][0] <= k
的范围[i,j]
是一定连续的,那么如果[0,i]
不是 j 的合法区间,那也不会是 j+1、j+2…的合法区间
那么当 j 增大时,我们只需要将前面不合法的 i 剔除 ,直到遇到一个合法的 i 停下 ,就能保证新的[i,j]
对于新的 j 合法,类似滑动窗口,我们就先把这个合法区间内的所有数组存入优先队列
但是我们需要找到最大的points[i][1] + points[j][1] + points[j][0] - points[i][0] )
,基本上,对于这个 j 来说,在它的合法区间内要找最大的points[i][1]
和最小的points[i][0]
我先了写了一个按照points[i][1]
从大到小排序,在其上points[i][0]
从小到大排序的优先队列,跑到了WA(64/66)
案例设置了[13,17]
以及他的合法区间[2,-2]和[10,3]
,如果按照points[i][1]
优先,就是选择[10,3]
,算出来得到23,但选择[2,-2]
则可以得到26,这很好理解,points[i][1]
和points[i][0]
并没有一个优先级
那么我们研究一下points[i][1] + points[j][1] + points[j][0] - points[i][0] )
,可以将他转化为 (points[j][1] + points[j][0]) + (points[i][1] - points[i][0])
这样就可以看出我们只需要在合法区间[i,j]
找一个最大的(points[i][1] - points[i][0])
出来就可以了,所以优先队列按照(points[i][1] - points[i][0])
从大到小排序,然后在其上points[i][0]
从小到大排序的优先队列,因为还需要在 j 变大,合法区间更新后,计算答案时排除掉对新的 j 不合法的 i
答案(points[i][1] - points[i][0])
的优先级最高,在其基础上选择合法答案
实际代码:
#include<bits/stdc++.h>
using namespace std;
struct cmp1
{
bool operator() (const vector<int>& L,const vector<int>& R)
{
if(L[1]==R[1]) return L[0]>R[0];//X要小
else return L[1]<R[1];//Y要大
}
};
int findMaxValueOfEquation(vector<vector<int>>& points, int k)
{
priority_queue<vector<int>,vector<vector<int>>,cmp1>p_q;
int lg=points.size(),l=0,ans=INT_MIN;
for(int i=1;i<lg;i++)
{
while (l<i && abs(points[i][0]-points[l][0])>k ) l++;
while (l<i)
{
p_q.push(vector<int>{points[l][0],points[l][1]-points[l][0]});
l++;
}
while(!p_q.empty())
{
vector<int> temp=p_q.top();
//cout<<"top:"<<temp[0]<<" "<<temp[1]<<" ans:"<<ans<<endl;
if( abs(points[i][0]-temp[0])>k ) p_q.pop();
else
{
ans=max(ans,temp[1]+points[i][1]+points[i][0]);
break;
}
}
}
return ans;
}
int main()
{
int k,a,b;cin>>k;
vector<vector<int>> points;
while(cin>>a>>b)
{
vector<int> point{a,b};
points.push_back(point);
}
int ans=findMaxValueOfEquation(points,k);
cout<<ans<<endl;
return 0;
}
限制:
2 <= points.length <= 10^5
points[i].length == 2
-10^8 <= points[i][0], points[i][1] <= 10^8
0 <= k <= 2 * 10^8
对于所有的1 <= i < j <= points.length ,points[i][0] < points[j][0] 都成立。也就是说,xi 是严格递增的。