赛前七日
赛前一个星期住在苏州,10.29 比赛前的星期天还打了 CF 的 Div1。 第一次场切了 Div1.前四道。当时觉得这好像不是状态不错的现象,这可能是要把运气透支的预兆…然后一个星期后的 CSP 就寄了😭
今年高一了,说起来还是首次参加 CSP-S。初一初二两年因为水平不够没有报 S。上初三之后报了,但是被苏州地狱难度的初赛卡在了起跑线上。🤮
算是憋了一年的气,2022年 CSP-S 终于稳稳当当进了第二轮,虽然说赛前一段时间比较佛系,但是心里对分数的期望还是比较高的。自我期望想有 300 来着。
赛前一个星期每天在和 LZJ 大牛在学校机房一起做题😍,挺久没回学校的了,每天中午和晚饭后还会去找同学踢球。和同学走在食堂的路上谈天说地的时候,仿佛找到了一点停课前快乐的校园生活的感觉。但是星期日很快到来,一眨眼就站在了考场的门前。
校园春雨池一景
踏上赛场
那天太阳挺大,下午两点苏州无锡的各路大仙都来到学校三元楼门口准备吊打我。
进考场的时候还发生了点小插曲。因为苏高中机房地板里不知道有什么金属,监考老师拿安检棒扫我鞋的时候一直在叫,我当时心里一直 mmp,总不能叫我在机房拖鞋吧😅。后来监考老师让我站在外面扫了一次,没有问题才安心坐下来。😥
T1
发题之后,按顺序先看了一眼 T1 ,当时没有看到每个点只能走一次的限制,想到了一个贪心的假做法,心里还想着 CSP t1怎么会这么水,然后准备开始写代码的时候发现了不太对劲,回头看了题面发现少读了一条限制😅。就这样浪费了比赛开始时的 15 min。
不过好在枚举中间两个点的技巧,前段时间在打叉姐出的模拟赛时用到过,所以没多久就想到了。
口胡一下。就是首先 bfs 求出每两个点之间的最短路。然后对每个点 u u u 储存一个列表 v [ u ] v[u] v[u],里面存所有与 u u u 和 起点 0 0 0 距离均不大于 k k k 的点。然后对每一个列表,将所有点按照权值降序排序。
路径上的 4 4 4 个 点 a , b , c , d a,b,c,d a,b,c,d 中,去枚举中间两个点 b , c b,c b,c,然后一定是 a ∈ v [ b ] , d ∈ v [ c ] , a ≠ b , a ≠ c , d ≠ b a\in v[b],d\in v[c],a\neq b,a\ne c,d\ne b a∈v[b],d∈v[c],a=b,a=c,d=b。那么因为列表中元素已经按照权值降序排序了,只要维护两个列表中当前最优的合法位置,相同就考虑后移其中一个,不相同就直接取答案。这个过程是 O ( 1 ) \operatorname O(1) O(1) 的。
- 时间复杂度: O ( n 2 ) \operatorname O(n^2) O(n2)
- 空间复杂度: O ( n 2 ) \operatorname O(n^2) O(n2)
一道技巧性的图论模拟题。前前后后大概花了 45 min 时间,细细回想浪费 15 min 确实不应该。
现场 code:
#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define pli pair<ll,int>
#define F first
#define S second
#define sz(x) (int)((x).size())
using namespace std;
const int INF=0x3f3f3f3f;
int n,m,k,dist[2505][2505],pos[2505];
pli a[2505];
vector<int> G[2505],can[2505];
ll ans;
void bfs(int s)
{
queue<int> q;
dist[s][s]=0;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(auto to:G[u])
if (dist[s][to]>=INF)
{
dist[s][to]=dist[s][u]+1;
q.push(to);
}
}
}
int main()
{
freopen("holiday.in","r",stdin);
freopen("holiday.out","w",stdout);
ios::sync_with_stdio(false),cin.tie(nullptr);
cin>>n>>m>>k;++k;
a[0]=mp(0ll,0);
for(int i=1;i<n;i++)
{
cin>>a[i].F;
a[i].S=i;
}
sort(a+1,a+n);reverse(a+1,a+n);
for(int i=0;i<n;i++)
pos[a[i].S]=i;
for(int i=0;i<m;i++)
{
int u,v;cin>>u>>v;--u,--v;
G[pos[u]].pb(pos[v]);
G[pos[v]].pb(pos[u]);
}
memset(dist,0x3f,sizeof(dist));
for(int i=0;i<n;i++)
bfs(i);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if (i!=j&&j!=0&&dist[0][j]<=k&&dist[j][i]<=k)
can[i].pb(j);
for(int x=1;x<n;x++)
for(int y=1;y<n;y++)if (x!=y&&dist[x][y]<=k)
{
int xi=0,yi=0;
while(xi<sz(can[x])&&can[x][xi]==y)xi++;
while(yi<sz(can[y])&&can[y][yi]==x)yi++;
if (xi<sz(can[x])&&yi<sz(can[y])&&can[x][xi]!=can[y][yi])
ans=max(ans,a[can[x][xi]].F+a[x].F+a[y].F+a[can[y][yi]].F);
else if (xi>=sz(can[x])||yi>=sz(can[y]))
continue;
else
{
int o=yi;
yi++;
while(yi<sz(can[y])&&can[y][yi]==x)yi++;
if (yi<sz(can[y]))
ans=max(ans,a[can[x][xi]].F+a[x].F+a[y].F+a[can[y][yi]].F);
yi=o;
xi++;
while(xi<sz(can[x])&&can[x][xi]==y)xi++;
if (xi<sz(can[x]))
ans=max(ans,a[can[x][xi]].F+a[x].F+a[y].F+a[can[y][yi]].F);
}
}
cout<<ans<<endl;
return 0;
}
T2
然后开始看 t2。一道博弈,很自然想到对两数的正负性进行讨论。
当 A 决策确定,B 的决策是比较好考虑的:
- 当 A 取正数,B 一定会取 min \min min
- 当 A 取 0 0 0 ,B 取什么都一样
- 当 A 取负数,B 一定会取 max \max max
然后考虑 A 的决策。
- 如果区间内有正数可选,考虑取正数的最优答案,需要讨论 B 取的 m i n b min_b minb 的正负性
- m i n b > 0 min_b>0 minb>0,A 取最大正数
- m i n b = 0 min_b=0 minb=0,A取什么都一样
- m i n b < 0 min_b<0 minb<0,A取最小正数
- 如果区间内有 0 0 0 可选,那么最优答案至少为 0 0 0
- 如果区间内有负数可选,考虑取负数的最优答案,需要讨论 B 取的 m a x b max_b maxb 的正负性
- m a x b > 0 max_b>0 maxb>0,A 取最大负数
- m a x b = 0 max_b=0 maxb=0,A 取什么都一样
- m a x b < 0 max_b<0 maxb<0,A 取最小负数。
讨论到这里这题就做完了,只需要对每个询问,求出 A区间最大最小正数、A区间最大最小负数、A区间是否有 0 0 0、B 区间最大最小值,就可以模拟这个讨论过程求出最大答案。维护区间最值的方式显然可以选择 ST 表。最大正数和最小负数都好维护;对于最小正数和最大负数,只要再开一个 ST 表,储存所有 正 数 − I N F 正数-INF 正数−INF 和 负 数 + I N F 负数+INF 负数+INF 即可。全过程前后用到 6 个 ST 表。
- 时间复杂度: O ( n log n + q ) \operatorname O(n\log n+q) O(nlogn+q)
- 空间复杂度: O ( n log n ) \operatorname O(n\log n) O(