【文献翻译】Machine learning applications in epilepsy

摘要

机器学习利用统计学和计算机科学原理,开发出能够通过解释数据而不是通过明确指令来提高性能的算法。随着机器学习技术在图像识别、语言处理和数据挖掘等领域的广泛应用,机器学习技术在从自动图像分析到疾病预测等医学应用中受到了越来越多的关注。本文综述了癫痫方面的平行进展,重点介绍了脑电图(EEG)、视频和动力学数据在自动癫痫检测、自动成像分析和术前计划、药物反应预测以及使用各种数据源预测医疗和手术结果方面的应用。本文还简要概述了常用的机器学习方法,以及在癫痫中进一步应用机器学习技术所面临的挑战。随着计算能力的提高、有效机器学习算法的可用性和更大数据集的积累,临床医生和研究人员将越来越多地受益于对这些技术的熟悉,以及在癫痫应用方面已经取得的重大进展。



1 - 引言

在人工智能领域,机器学习将统计学和计算机科学联系起来,开发出算法,其性能随着有意义的数据而不是明确的指令而提高。除了在语音识别、图像分类和文本翻译方面无处不在的应用,机器学习已越来越多地用于各种医疗应用,包括基于光学相干断层扫描数据的眼科转诊分类,从皮肤镜和摄影图像诊断恶性黑色素瘤,从急诊科遭遇记录中识别流感,在所有三种情况下均符合或超过临床专家的表现。在数据收集、存储和处理的不断改进推动下,癫痫也取得了类似的进展。为了说明机器学习技术在癫痫中的广泛应用,本文简要概述了常用的机器学习算法,重点介绍了机器学习技术在癫痫自动检测、成像和临床数据分析、癫痫定位以及医疗和外科结果预测等方面的最新应用



2 - 机器学习应用

机器学习任务大致可分为有监督学习和无监督学习(图1A)。在监督学习任务中,对一组先前标记的输入数据“训练”算法,以估计未标记数据的输出。例如,带标注的EEG记录可用于训练自动检测癫痫样放电的算法。相比之下,在无监督学习中,算法用于发现未标记输入数据中的趋势、子组或异常值。与前面的例子相比,无监督算法可以通过检测背景EEG记录中的异常值来识别候选癫痫样放电。无论采用哪种方法,信息性输入特征都会在一个称为特征选择的过程中被识别(手动识别,基于专家级知识,或由算法本身识别,无需领域专业知识),然后使用映射函数进行分析,该映射函数可根据这些特征生成输出预测
在这里插入图片描述
在更常用的映射函数中,

  • 随机森林算法从训练数据创建多个决策树,其中,每棵树使用随机选择的输入特征子集作为迭代分岔点,将输入数据最好地分离到预期输出中(图1B)。然后,生成的决策树为新输入生成一个集合输出(例如,决策树中最常预测的分类)。
  • k-最近邻k-NN)分类(图1C)中,给定输入由特征空间中的向量表示,并计算输入向量和训练集中标记向量之间的距离;然后将输入分配给其k个最近邻中的大多数类别(例如,对于k=5,将输入分配给与其最近的五个训练数据点相同的类别)。
  • 相比之下,支持向量机SVM)分类器在高维特征空间中生成一个超平面,最大限度地分离标记的训练数据簇,为分类新输入提供决策边界(图1D)。
  • 多层人工神经网络通过节点层处理数据,在每种情况下,加权输入求和,并通过非线性激活函数产生中间输出;这些可以根据需要依次通过额外的节点层,最终到达输出节点(图1E)。
  • 深度学习指的是使用多个“隐藏层”,并提供了使用足够大的数据集进行自动特征选择的优势,实现了高精度,换句话说,无需结合领域专业知识,训练数据可以有效地作为深度学习模型的编程代码。因此,深度学习方面的进步使机器学习领域的许多最新成就得以实现,例如自动图像分类、语音识别、文本翻译等。

在给定应用下的映射函数选择可能受到多个因素的影响,包括样本大小(例如,需要更大的数据集才能通过深度学习实现高精度)、易用性(无论是来自更好的用户指定变量,如k-NN,还是来自用户友好软件包的可用性),或相对可解释性(越来越多的算法特定和算法不可知的方法日益促进);然而,最终的选择往往是经验性的、反复的,并由研究人员的经验决定。映射函数也可以组合在一个给定的分类任务中,形成一个集合,基于这样一个原则,即易于产生不完全相同错误的预测器委员会将证明比任何给定的预测器更准确。可以通过将相同的映射函数应用于数据子集、使用不同的参数集训练相同的函数,或者通过组合不同的映射函数来生成集合,总体上以牺牲计算时间、数据大小和可理解性为代价来提高精度。按照类似的思路,自动机器学习(auto-ML)将映射函数及其参数的选择作为一项机器学习任务,允许在用户输入很少的情况下选择和优化映射函数或函数集合。

对于小数据集或过于复杂的模型,映射函数可能会“过拟合”训练数据,学习样本固有的属性,而不是总体中的关系;因此,该算法的通用性或样本外准确度降低。为了限制过拟合,可以将训练数据分为训练集(算法从中设置参数)和验证集(从中获得算法可推广性的初步估计值)(图1F)。 然后,后者(验证集)可用于调整算法的超参数,也就是说,算法的某些方面不是直接从训练数据中学习的(包括选定的特征、映射函数的类型或映射函数的预先指定属性,例如k-NN分类中的邻居数),这些方面会影响算法的效率。这种划分和重新调整可以重复预先指定的次数(K倍交叉验证),或通过在每次迭代中拿出一个数据点进行验证(保留一个交叉验证),在整个数据集上重复。

随后,可以使用第三个保留数据的测试集来估计最终模型的可推广性(图1F),例如,通过确定二元分类器的准确性、敏感性和特异性。另一种常见的测量方法是受试者工作特征曲线AUC下的面积,该曲线将灵敏度作为不同测试阈值下假阳性率的函数进行检查;该曲线下的区域提供了一个独立于患病率的测试判别能力的衡量标准。克服过拟合的另一种方法是迁移学习,其中,先前为一项任务训练的深度学习模型可以使用更小的数据集为不同的任务重新训练,例如通过重新训练图像分类算法来对Gram染色图像进行分类。



3 - 癫痫发作的自动检测

鉴于机器学习在分析大型复杂数据集方面的实用性,脑电记录中的自动癫痫检测受到了相当大的关注。在这项任务中应用了多种技术,包括SVM、k-NN、和深度学习分类器。类似的技术也被应用于从EEG数据预测癫痫发作,使用有限的数据库实现了长达几分钟的预测时间,包括适用于可穿戴或植入式设备的低功耗芯片。关于癫痫检测和预测的最新进展和未来方向,已在其他地方进行了更深入的审查。

然而,除了脑电图记录之外,机器学习技术也被应用于癫痫检测的新数据源。在新生儿癫痫中,Karayiannis等人检查了床边视频记录中的肢体运动,训练神经网络将记录分为局灶性阵挛发作、肌阵挛发作或非癫痫运动;在对120次记录进行训练后,作者在匹配的测试集上获得了85.5%-94.4%的癫痫发作检测灵敏度和92.5%-97.9%的特异性(根据输入数据的类型而不同,总体上更好地检测肌阵挛发作)。34采用改进视频分析算法和神经网络结构的后续研究改善了这一性能,峰值灵敏度为96.8%,特异性为97.7%。Ogura等人将EEG数据添加到基于视频的肢体运动测量中,证明使用概率神经网络检测癫痫痉挛的灵敏度为96.2%,特异性为94.2%。在儿童和成人癫痫中,早期研究依赖于附着在解剖标志上的红外标记物进行运动检测,因此受到反射标记物遮挡的限制。因此,Cuppens等人在夜间视频记录中跟踪了由角点检测算法定义的时空兴趣点,在使用SVM分类器检测肌阵挛痉挛时达到了77%的峰值灵敏度(尽管注意到记录的性能降低,包括轻微肌阵挛痉挛或混合癫痫和非癫痫运动),阿喀琉斯等人从设置在癫痫监测单元中的红外Kinect相机(微软、雷德蒙、华盛顿)提取深度和位置数据,使用卷积神经网络识别强直性、强直-阵挛性和局灶性运动性癫痫发作。在对五名患者的癫痫发作视频进行训练后,该算法在五名测试患者中实现了78.3%的AUC,实现了与实时分析兼容的处理速度(每秒10帧)。综上所述,尽管在视频记录的癫痫检测准确性方面仍有改进的余地,但基于机器学习的技术在癫痫监测单元的癫痫遥测和特征描述以及动态视频记录的补充分析中正迅速接近实时适用性

除了视频数据,机器学习方法也被应用于运动信息的分析。最近一项针对69名患者的多中心研究将腕带加速计数据与皮肤电活动(反映交感神经系统对汗腺的激活)测量相结合,实现了94.6%的灵敏度和每天0.20的假阳性率(AUC 94%),使用SVM分类器的中位检测潜伏期为29.3秒。Milošević等人还将SVM应用于四肢佩戴加速计的数据,并结合两个肱二头肌的表面肌电图(sEMG)记录,在七名儿科患者中实现了90.9%的综合灵敏度、10.5秒的临床潜伏期和每12小时记录0.45次警报的假阳性率。值得注意的是,作者发现40%-45%的假警报具有临床意义,包括跌倒、EEG导联移除或与行为有关。41在另一项值得注意的研究中,使用SVM分类器检查上肢加速计数据的单个肌肉成分转换,证明区分非癫痫性惊厥和运动性惊厥的敏感性为93.3%,特异性为85.0%。另外机器学习方法,包括随机森林和k-NN分类器,也已成功应用于运动数据。总的来说,基于加速计和表面肌电图的系统的便携性有望在非卧床环境中更准确地检测和跟踪癫痫发作,在未来的应用中还可能结合脉搏血氧饱和度、心电图和音频数据。



4 - 机器学习在癫痫诊断中的应用

4.1 癫痫的影像学分析

除了检测或预测个体癫痫发作外,机器学习方法还被用于使用各种数据源进行癫痫更广泛的诊断。特别是,许多研究已经将机器学习技术应用于成像数据的分析。Zhang等人在100名癫痫患者和80名对照者的静息状态功能MRI(fMRI)上检查了同源脑区功能连接的不对称性,使用SVM分类器实现了82.5%的峰值诊断敏感性和85%的特异性。Amarreh等人研究了20名儿科患者和29名对照组的扩散张量成像(DTI)数据中的分数各向异性、平均扩散率、径向扩散率和轴向扩散率,发现SVM分类器可以准确区分活动性癫痫患者与缓解期患者(即12个月内无癫痫发作且未服用药物)以及对照组。相比之下,Soriano等人检查了来自14例局灶性额叶癫痫患者、14例特发性全身性癫痫患者和14例对照组的静息状态脑磁图(MEG)数据,在使用顺序神经网络分类器区分三组时达到了88%的敏感性和86%的特异性。尽管这些研究受到适度样本量的限制,但它们展示了机器学习技术在揭示癫痫中细微的解剖和功能网络变化方面的能力,从而在成像分析中实现了新的研究路线。在一个示例中,Pardoe等人训练了一个高斯过程回归算法,以使用来自2001名健康对照者数据库的T1加权MRI序列估计患者年龄;在随后将该算法应用于42例新诊断的局灶性癫痫患者、94例药物难治性局灶性癫痫患者和74例同期对照组时,他们注意到基于影像学的估计脑年龄与药物难治性患者的实际年龄之间存在4.5年的差异,且发病年龄越早差异越大。

机器学习技术在成像分析中的一个特殊应用是局灶性皮质病变的自动表征。Hong等人将SVM分类器应用于41例局灶性皮质发育不良(FCD)患者以及匹配对照组的皮质厚度和曲率图,在区分组织学亚型方面实现了98%的准确率,在偏侧化方面实现了92%和86%的准确率(分别适用于I型和II型FCD),在平均4年的随访中,预测Engel I癫痫发作自由度的准确率分别为92%和82%(如上所述)。El Azami等人注意到用少量样本充分捕捉病变变异性的困难,转而展示了一种无监督的方法,训练一类支持向量机来识别异托邦和灰白质交界处的模糊,作为77名健康对照的T1加权图像上的异常值。在11例患者扫描中进行测试时,分类器的灵敏度为77%,平均每位患者3.2次假阳性检测,相比之下,使用最先进的统计参数映射(英国伦敦威康人类神经成像中心)的灵敏度为54%,平均假阳性为6.3次,这是因为改进了对专家注释的MRI研究中看不到的病变的检测。最近,一种神经网络分类器在检测来自三个不同癫痫中心的61名II型FCD患者和120名对照组(主要包括健康对照组和海马硬化对照组)数据集上的孤立性FCD时,显示了73.7%的灵敏度和90.0%的特异性。


4.2 非影像学诊断

除了成像分析之外,机器学习技术同样可以从广泛的临床数据中诊断癫痫。Goker等人对9名青少年肌阵挛性癫痫患者和10名对照者的105次扫描肌电图记录应用了几种分类算法,使用人工神经网络实现了100%的诊断敏感性和83.6%的特异性。Kassahun等人采用基于遗传学的数据挖掘方法(结合了自动ML算法)使用临床符号学区分颞叶癫痫(TLEs)和颞外癫痫,发现与单个临床医生相比表现良好,与检查相同数据的临床医生团队相比表现可比。56使用SVM分类器,Won等人检查了对比度增益控制的视觉诱发电位测量,以区分10名特发性全身性癫痫患者和19名对照者,获得了80%-86%的敏感性和77%-85%的特异性。57 Frank等人检查了228名癫痫患者服用的神经心理学电池,使用支持向量机分类器区分颞外癫痫患者和颞外癫痫患者(准确率为72.2%-78.0%),并对颞外癫痫患者的癫痫病灶进行侧化(准确率为52.8%-61.3%)。此外,许多研究人员已将机器学习技术应用于分析未处理的癫痫特征病历。Connolly等人研究了局灶性、全身性或其他未指定癫痫患儿的进展记录,使用SVM分类器分析字串的频率;在对一个机构的90个类别的笔记进行训练后,该算法证明了对不同机构的进度笔记进行分类比偶然分类更好,如果在对第三个机构的笔记进行测试之前,使用两个机构的笔记对分类器进行训练,则性能会有所提高。

相比之下,Biswal等人对3277份标记有无癫痫发作或癫痫样放电的EEG报告训练了一个朴素贝叶斯分类器,然后在39695份报告的测试集上,检测有癫痫发作的报告和有癫痫样放电的报告的AUC分别达到99.05%和96.15%。60在这种方法的基础上,Goodwin和Harabagiu将EEG报告的自动索引与相关记录的神经网络生成的“指纹”相结合,以创建一个可搜索的数据库,允许通过以下查询识别数据库中的患者队列:,“TIRDA无尖锐、尖峰或电图癫痫发作的癫痫发作史和脑电图”、;一个专家评审小组发现,添加EEG“指纹”指数提供了更相关的结果,并捕获了仅通过搜索EEG报告无法恢复的相关记录。这些研究中检查的广泛数据源强调了机器学习技术在利用未充分利用的临床数据进行癫痫患者和人群水平表征方面的效用


4.3 癫痫偏侧化

机器学习的另一个重点领域——增强癫痫诊断一直是颞叶癫痫的检测和偏侧化。在早期的研究中,Bakken等人使用人工神经网络分析了15名TLE患者和13名对照组的海马磁共振波谱数据,在67个波谱中的60个波谱中正确区分并偏侧了TLE患者和对照组。62在另一项研究中,神经网络分类器在检测197名患者和64名对照的发作间期18F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)图像并对其进行偏侧化方面与专家评审员的一致性为85%。63 Kerr等人后来将神经网络应用于73例TLE患者和32例非癫痫发作患者的发作间期FDG-PET图像,在76%的病例中准确识别和侧化TLE,相比之下,FDG-PET数据专家评审的准确率为78%,MRI数据专家评审的准确率为71%。64.有趣的是,专家评审结果与神经网络分类器之间的相关性有限,这表明神经网络不能重现人工分析。64对发作期和发作间期单光子发射计算机断层扫描(SPECT)数据进行多重分形分析,使用SVM分类器进行检查,结果还显示,在20例中有19例准确定位TLE,与传统的图像减法相比,效果良好。65许多研究还将机器学习技术应用于使用T1加权和流体衰减反转恢复(FLAIR)序列对结构MRI进行形态计量分析,用于TLE的检测66和侧化67。最近,扩散加权成像(DWI)、68 DTI、69和扩散峰度成像的分析也显示了类似的结果。 最近,Jin和Chung还将SVM分类器应用于静息状态MEG的功能连通性数据,以95.1%的准确率将46例TLE患者与匹配的对照组区分开来,并以76.2%的准确率对TLE进行侧化。



5 在癫痫外科治疗中的应用

机器学习方法也越来越多地应用于癫痫手术计划和手术结果预测。Dian等人检查了6名颞外癫痫切除患者的颅内EEG记录,以使用SVM分类器识别感兴趣区域,发现在达到Engel I结果的患者中,与最终切除区域密切一致,但在Engel III或IV结果的患者中,一致性有限,这可能意味着前者需要更大的切除区域,或后者癫痫发作区的识别不准确。在儿科人群中,Roland等人强调了使用基于神经网络的算法在功能磁共振成像上识别标准静息状态网络,作为术前规划的一部分,允许识别临床相关网络,即使在全身麻醉下也是如此。除了在FCD检测和TLE侧化方面的应用,这些发现开始强调机器学习技术在颞外癫痫或表面上没有发现影像学发现的患者的手术规划中的更广泛适用性。

预测手术结果方面,Grigsby等人的一项早期研究根据65例接受前颞叶切除术的患者的编码临床、电图、神经心理学、影像学和手术数据训练了神经网络分类器,在22名患者的试验队列中,预测Engel I结果的敏感性为80.0%,特异性为83.3%(Engel I或II结果分别提高到100%和85.7%)。74 Arle等人还将不同结构的神经网络应用于类似的数据集(尽管也纳入了药物数量和剂量指数),报告80名外科患者的Engel I预后预测准确率为96%;奇怪的是,作者注意到,排除术中变量(如皮质电图或病理学数据)后,准确率提高到98%。75最近,Armañanzas等人使用类似的术前数据比较了k-NN和Naïve Bayes分类器在预测Engel I和II–III预后方面的效果,虽然显著增加了一个更大的神经心理学组合,包括使用罗夏测验评估的个性风格;在将分类器缩小到三个信息量最大的变量(包括个性风格)后,作者注意到两个分类器的预测准确率均为89.47%。Memarian等人在检查20名患者术前临床、电生理和结构MRI数据时,将线性判别分析与天真的Bayes和SVM分类器进行了比较,指出使用最小二乘SVM分类器预测Engel I预后的准确率最高(95%)。相比之下,一项仅对49名患者的T1加权MRI序列使用SVM分类器的研究显示,在预测术后癫痫发作自由度方面,其敏感性为100%,特异性为88%-92%(分别在男性和女性队列中)。最近,与仅使用临床变量的判别函数分类器相比,神经网络分类器检测50例TLE患者基于DTI的结构连接体,在预测Engel I预后方面产生了88%的阳性预测值和79%的阴性预测值。静息状态功能磁共振成像上丘脑皮质连接性的测量同样被用于预测迷走神经刺激的良好反应(>50%癫痫发作减少),在21名儿科患者中使用SVM分类器获得86%的AUC。相反,Antony等人在23例接受前颞叶切除术的患者中应用SVM分类器测量立体EEG的功能连通性,在1年的随访中,预测癫痫发作自由度的敏感性为90%,特异性为85%。Tomlinson等人还利用17名儿童患者发作间期颅内EEG记录检查了功能连通性,在使用SVM分类器预测Engel I预后方面实现了100%的敏感性和87.5%的特异性。然而,令人感兴趣的是,一项对118名患者的回顾性研究发现,无论是MRI还是常规、视频或颅内EEG数据,都无法使用条件logistic回归预测术后2年的癫痫发作自由度,另一项研究同样无法从FDG-PET和11C-flumazenil-PET数据预测癫痫发作自由度,这些数据是通过随机森林分类器评估的。然而,从整体来看,这些研究表明,机器学习技术能够在典型术前评估期间获得的复杂、多模态数据中发现具有预测价值的趋势,从而有可能改善患者选择和咨询



6 在癫痫医疗管理中的应用

与手术计划和手术结果预测一样,机器学习技术也被应用于癫痫的医疗决策和医疗结果预测。例如,Aslan等人利用302名患者的七个临床特征(包括发病年龄、热性惊厥史和发病后1年以上的临床表现)训练了一个神经网络分类器,在456个测试案例中,预测发作自由度、发作减少或发作频率无显著变化(即<50%减少)的准确率为91.1%。Cohen等人使用朴素贝叶斯和SVM分类器,检查了200名儿科患者(一半接受癫痫手术)的临床就诊记录,以预测手术候选资格,发现在实际转诊前的几个月内,其表现与四名神经科医生组成的小组相当;然而,值得注意的是,这种比较受到围绕平均预测的高度离散度的限制。相比之下,Kimiskidis等人使用朴素贝叶斯分类器检查了来自成对脉冲经颅磁刺激EEG记录的特征,在区分遗传性泛发性癫痫患者和对照组时,平均灵敏度为86%,特异性为82%,在12个月的随访中,预测癫痫发作自由度的平均敏感性为80%,特异性为73%。最近,An等人利用2006年至2015年的美国综合索赔数据,比较了机器学习算法在预测抗药性癫痫(定义为在研究期间需要三次以上的药物改变)方面的作用。作者发现,性能最好的算法是一个随机森林分类器,它使用175735份记录中的635个特征(包括人口统计学变量、共病、治疗方案、保险数据和临床遭遇)进行训练,产生了76.4%的AUC,并能在第二次药物试验失败前平均1.97年识别出抗药性癫痫患者,使用第一次开药处方时可用的数据。

许多研究也证明了机器学习算法在预测个体药物反应方面的能力。Devinsky等人从医疗索赔数据库中提取的34990名患者的记录中检查了临床特征(例如,使用的药物类型和数量、年龄和共病),并训练了一个随机森林分类器,以预测在接下来的12个月内最不可能需要改变的药物方案(作为方案疗效和耐受性的代理)。在8292名患者的测试集中,分类器的预测方案产生了72%的AUC,如果在预测时开出处方,每年可能会减少281.5天的住院日和更少的医生就诊,尽管只有13%的病例符合规定的方案。另一项研究检测了20名儿童癫痫患者在药物改变前后的6个脑电图特征,在使用SVM分类器预测后续治疗反应(即癫痫发作频率降低>50%)时,获得了85.71%的敏感性和76.92%的特异性。在一项类似的研究中,临床数据(如发病年龄、发作频率、家族史和异常成像)与EEG特征(α、β、δ和θ频带的样本熵)相结合,这些特征来自36名新诊断的患者,这些患者开始接受左乙拉西坦单药治疗,以预测Engel I预后,使用SVM分类器获得100%的敏感性和80.0%(AUC 96%)的特异性。Petrovski等人使用k-NN分类器对115名患者的五种单核苷酸多态性进行了显著调查,以预测1年随访时的癫痫发作自由度,在新诊断的癫痫患者队列中,敏感性为91%,特异性为82%,在接受慢性药物治疗的108名患者的测试队列中,敏感性和特异性为81%。

除了癫痫发作频率的降低,机器学习技术还揭示了一些相关的临床结果。Paldino等人发现,随机森林分类器在使用33例皮质发育畸形患儿的基于DTI的全脑纤维束成像数据预测语言障碍时,具有100%的敏感性和95.4%的特异性。93后来的一项研究表明,根据45名儿童癫痫患者的静息状态功能磁共振成像图像训练的随机森林分类器也能够高精度地估计疾病持续时间(与真实疾病持续时间相关,r=0.95,P=0.0004),这反过来又与全量表智商成反比。94 Piña‐Garza等人利用多州医疗补助索赔数据库调查了Lennox‐Gastaut综合征患者的医疗保健利用情况,利用随机森林分类器根据临床变量识别可能的患者(例如,非巴莫特或克洛巴扎姆处方、迷走神经刺激器放置、胼胝体切开术、头盔使用或智力残疾索赔);除了发现更高的终生医疗保健成本,尤其是在家庭或长期护理中,作者还发现老年患者使用氯巴扎姆或鲁非那胺的比率较低,这引发了该队列中管理不善的问题。Grinspan等人研究了两个儿科转诊中心医疗记录中的人口统计学、保险、共病和药物数据,证明随机森林分类器在预测下一年急诊就诊率时,每个中心的AUC分别为84.1%和73.4%。96这些研究中检查的一系列临床结果,从癫痫发作率到药物反应到医疗保健利用,突显了机器学习技术在临床实践中的潜在效用。

6.1 限制和未来方向

尽管机器学习技术在癫痫的广泛应用中表现出了很高的辨别能力,但文献中关于外部验证研究的经验相当少。在一个值得注意的例子中,Shazadi等人97将Petrovki等人92描述的五个SNP分类器应用于在英国招募的两个外部队列,发现该算法无法预测原始研究中的治疗反应。当使用英国队列的子集进行再培训时,分类器同样无法预测结果。作者指出了两组之间药物使用的差异,发现在原始队列中卡马西平和丙戊酸钠的使用率较高,但在英国队列中拉莫三嗪的使用比例较高,分类器仅对接受卡马西平或丙戊酸钠治疗的患者显示出适度的预测能力(使用英国队列进行再培训时);然而,值得注意的是,SNPs与这些药物之间没有明确的功能关系。这两个研究人群在样本量、种族构成和临床环境方面也存在差异(英国的较大队列被纳入临床试验,并作为临床试验的一部分进行评估)。

Shazadi等人的研究强调了机器学习应用推广的几个潜在障碍,包括训练数据集大小、混杂的临床变量以及数据收集和解释的可变性。如前所述,较小的数据集会增加过度拟合的风险,尤其是对于过于复杂的模型或那些复杂度不足以处理异常值的模型。此外,无论选择何种映射函数或交叉验证方法,非常小的训练集可能会偶然导致表面上的高分类精度。认识到积累大型临床数据集的困难,开发了许多基于云的存储库,以实现跨机构数据共享和集中数据质量保证。这些方法为创建更大、更具代表性的样本群体提供了机会,同时也促进了数据收集和分类的一致性,以开发更具普遍性的模型。这些模型的强大外部验证,以及可解释性的进步,可能会提高临床医生对这些模型的信心,并促进将其纳入临床实践。



7 结论

机器学习技术在商业、工业以及几个医学子专业中的应用越来越普遍,机器学习技术已经在癫痫病的挑战性领域得到广泛应用。正如在癫痫检测方面迅速成熟的文献所证明的那样,机器学习技术有望扩大住院和门诊癫痫监测的能力,并可能为癫痫预测的进一步进展提供途径。脑电图和成像数据自动分析的进展也同样证明了机器学习在发现目前专家评审无法获得的诊断和预后信息方面的能力,为改进药物治疗选择、临床结果预测和手术计划创造了机会。然而,验证研究文献中相对有限的经验确实对这些模型的普遍性提出了疑问,并强调了需要更大、更多样化的数据集,以及增加对外部验证研究的投资。尽管存在这些担忧,但新的方法,包括使用自动机器学习来减少进入壁垒,以及开发跨机构、基于云的数据存储库来改进培训数据集,突出了开发越来越健壮、可推广、适合引入临床实践的算法的激动人心的途径。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值