给Mac中Xcode配置指定版本Opencv,以及Xcode的摄像头权限问题
- 因为计算机视觉作业问题,需要给Mac中的Xcode配置Opencv工具,在途中遇到各种坑,总结一下用来复习。(之前配置过,并未总结,导致又浪费较多时间,在此告诫各位,请做笔记、请做笔记、请做笔记)
- 主要通过Homebrew工具以及Opencv官网指定的方式进行安装使用。
- opencv安装包下载配置具体操作如下:
- 若电脑未安装Homebrew,前往Homebrew官网拷贝最新命令到Mac终端进行麻瓜式安装(Homebrew官网链接),此处不针对Homebrew进行具体介绍,感兴趣的参考博文:Homewbrew介绍和使用,安装过程中会出现要求换行的操作,
切记
换行。
- 安装完成Homebrew,会出现
/usr/local/Cellar
文件夹,之后通过brew install **
指令安装的软件包都会在此文件夹中。 - 通过brew安装cmake,具体命令行指令:
brew install cmake
,完成到此处之后/usr/local/Cellar
文件夹内容如下图:
- 若想要安装brew默认版本的opencv,可执行指令
brew install opencv
,同样是一键麻瓜式回车。在使用此方法时遇到较多版本的问题,此时默认版本为4.0.0.1,即最新版本,但是在/usr/local/include
中出现的文件夹为opencv4/opencv2
,导致在配置xcode时出现依赖包中的文件查找不到,运行代码时报错。正常安装结果是会在/usr/local/include
文件夹中出现opencv
以及opencv2
两个文件夹,其中存放着将要掉用的opencv头文件。 - 前往Opencv官网,下载所需要版本的资源包,按照课程要求下载版本为3.4.4。下载链接:opencv资源下载链接
- 下载完成后,将
.zip
文件拷贝到指定文件夹下进行解压,解压完成会生成对应的文件。 按照官网简介,执行以下指令进行opencv的安装配置:
此处的命令行全部执行完成后会在cd ~/opencv #此处为opencv的解压文件目录 mkdir build cd build cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local .. sudo make install #此步较为费事,耐心等候 make
/usr/local/include
目录下多出opencv2
以及opencv
两个目录,目录中的文件内容主要为opencv的头文件。另外,文件/usr/local/lib
中会出现opencv相关依赖包,即若干libopencv******.dylib
文件,依赖包的内容如下图(本人在通过cmake安装其他版本的opencv时,出现包含动态连接池的包丢失问题,即名为libopencv**core版本号.dylib
的文件丢失)。此步全部完成opencv的安装包下载配置。
- 若电脑未安装Homebrew,前往Homebrew官网拷贝最新命令到Mac终端进行麻瓜式安装(Homebrew官网链接),此处不针对Homebrew进行具体介绍,感兴趣的参考博文:Homewbrew介绍和使用,安装过程中会出现要求换行的操作,
- 给Xcode配置opencv开发环境(此步为主要问题所在),即可以在Xcode中通过编写C++代码调用opencv中的库函数。具体操作步骤如下:
- 打开Xcode,创建新的 Command Line Tool项目。如下图
- 点击工程,选择TARGETS->右侧选择All->Build Settings -> 搜索框输入search paths ->找到search path。找到其中的
Header Search Parhs
与Library Search Paths
。
1) 在Header Search Parhs
后边添加$(PROJECT_DIR)
以及/usr/local/include
两个路径
2) 在Library Search Paths
后边添加$(PROJECT_DIR)
以及/usr/local/lib
两个路径
其中$(PROJECT_DIR)
表示项目当前所在的路径,Xcode会自动解析。具体操作见下图:
点击箭头所指的+
进行添加新的路径。
- 完成路径配置时,还需要引入c++动态链接库。其他博客可能介绍创建新的group,然后将需要使用的依赖库直接拖进该group文件中,此方法个人感觉会出现较多冗余,且影响整个项目中的文件结构。推荐方式是,在Build Phase的Link Binary With Libraries下直接添加,如下图:
展开Link Binary Libraries,点击出现的+
,进行添加运行程序所使用的依赖函数。此处的依赖函数是指/usr/local/lib
目录下libopencv****.dylib
文件,为了方便起见,导入全部。注意:只需要添加没有箭头的文件,具体如下。
其中没有箭头的文件是指红色指示标对应的文件,右箭头的文件为黄色指示标对应的文件,个人觉得右箭头的文件应该为可执行文件,具体自行网上查找。 - 至此,Xcode中opencv的全部配置完成,可自行编译代码进行测试,给出测试代码如下:
若程序编译通过,并且可执行,说明环境配置正确可以使用。#include <opencv2/core/core.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> #include <string> using namespace cv; using namespace std; //此代码是调用opencv读取本地文件,并创建窗口将其显示出来 int main( int argc, char** argv ) { string imageName("/Users/1.jpg"); // 此处放置对应图片的绝对路径 if( argc > 1) { imageName = argv[1]; } Mat image; image = imread(imageName.c_str(), IMREAD_COLOR); // Read the file if( image.empty() ) // Check for invalid input { cout << "Could not open or find the image" << std::endl ; return -1; } namedWindow( "Display window", WINDOW_AUTOSIZE ); // Create a window for display. imshow( "Display window", image ); // Show our image inside it. waitKey(0); // Wait for a keystroke in the window return 0; }
- 打开Xcode,创建新的 Command Line Tool项目。如下图
- 以上内容已经完整解决在Xcode中配置opencv问题,但是,在实际使用的时候发现,在代码调用mac自带摄像头时虽然程序Build成功,仍然无法直接运行,报错内容大致如下:
出现以上问题的主要原因为This app has crashed because it attempted to access privacy-sensitive data without a usage description. The app's Info.plist must contain an NSCameraUsageDescription key with a string value explaining to the user how the app uses
macOS 10.14
加入了对所有程序的隐私权限管理,如果要涉及隐私权限,要在可执行程序旁边加入Info.plist
且在里面注册摄像头权限。具体的解决步骤如下:- 从Mac自带程序Photo Booth里直接拷贝复制其
Info.plist
文件至桌面,修改其中内容,直接使用,具体操作如下图:
- 其
Info.plist
文件的主要内容如下:(默认打开方式为Xcode打开)
将其中不必要的描述直接删除(上图中红色箭头所指示),并将其中个别属性的描述值修改如下:(下图中黄色箭头所指示的内容为需要修改的内容)
- 完成以上步骤,该文件既可以被使用,具体使用方法见下图:
至此,Xcode的摄像头权限问题全部完成,测试代码如下:(代码源自网络)#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/opencv.hpp> using namespace ; using namespace cv; // 此代码作用是,从Mac自带的摄像头读入图像,然后canny提取了边缘然后显示 IplImage* doCanny(IplImage* image_input, double lowThresh, double highThresh, aperture) { if(image_input->nChannels != 1) return (0); IplImage* image_output = cvCreateImage(cvGetSize(image_input), image_input->depth, image_input->nChannels); cvCanny(image_input,image_output,lowThresh,highThresh,aperture); return(image_output); } int main(int argc, char* argv[]) { cvNamedWindow("Camera" , CV_WINDOW_AUTOSIZE ); CvCapture* capture = cvCreateCameraCapture(CV_CAP_ANY); assert(capture != NULL); IplImage *frame = 0; frame = cvQueryFrame(capture); IplImage *frame_edge = cvCreateImage(cvGetSize(frame), IPL_DEPTH_8U, 1); while(1) { frame = cvQueryFrame(capture); if(!frame) break; cvConvertImage(frame,frame_edge,0); frame = cvCloneImage(frame_edge); frame_edge = doCanny(frame_edge,70,90,3); cvShowImage("Camera",frame_edge); char c = cvWaitKey(15); if(c == 27) break; } cvReleaseCapture(&capture); cvReleaseImage( &frame_edge ); cvReleaseImage( &frame); return (int)0; }
- 从Mac自带程序Photo Booth里直接拷贝复制其