关于(A/B)%C 以及默慈金数&&HDU 5673 Robot

首先当b与c互素

=(a*kuaisum(b,c-2)%c)

这难道就是传说中的逆元

我不知道,

我只知道

当bc互素是

=a*b^(phi(c)-1)%c

其实上面2个式子是一样的,,


然后再说下默慈金数 :在一个圆上的n个点间,画出彼此不相交的弦的全部方法的总数

公式:

大概就是  1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209, 593742784829

HDU 5673 Robot

代码如下

仅供参考

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#include<stdlib.h>
#include<math.h>
#include<queue>
#define MOD  1000000007
long long a[1000005];
long long suan(long long a,long long b,long long m)
{
    long long d,t;

    d=1;
    t=a;
    while (b>0)
    {
        if (b%2==1)
            d=(d*t)%m;
        b/=2;
        t=(t*t)%m;
    }

    return d;
}
int main()
{
    //printf("%I64d\n",1129760415%MOD);
    a[1]=1;
    a[2]=2;
    for(long long i=2; i<=1000000; i++)
    {
        a[i+1]=((2*i+3)%MOD*a[i])%MOD;
        a[i+1]=(a[i+1]+(((3*i)%MOD)*a[i-1]%MOD)%MOD)%MOD;
        a[i+1]=(a[i+1]*(suan(i+3,MOD-2,MOD))%MOD)%MOD;

        a[i+1]=a[i+1]%MOD;
    }
    int test;
    scanf("%d",&test);
    while(test--)
    {
        int n;
        scanf("%d",&n);
        printf("%I64d\n",a[n]%MOD);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值