HD 2059 (多阶段决策问题)

Problem Description
据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
 

Input
本题目包含多组测试,请处理到文件结束。每个测试包括四行:
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
 

Output
当乌龟有可能赢的时候输出一行 “What a pity rabbit!"。否则输出一行"Good job,rabbit!";
题目数据保证不会出现乌龟和兔子同时到达的情况。
 

Sample Input
  
  
100 3 20 5 5 8 2 10 40 60 100 3 60 5 5 8 2 10 40 60
 
Sample Output
  
  
Good job,rabbit! What a pity rabbit!


实际就是计算乌龟的最短时间。

看到这个题目脑袋里会蹦出一些想法:到一个站点充不充电?前面的决策对后面有无影响?

所以是一个多阶段决策的问题,只要到达每个站点的时间是最优的,那么到最后就是最小的时间

于是用一个数组DP来记录到达每个站点的最短时间DP[0]就是0,DP[1]~DP[n]记录到达每个站点的最优解,DP[n+1]即为所求值。

怎么确定哪个站点充电呢?用枚举的方法来确定最小值,对于每一个站点(比如为i),在到达该站点前假设在j站点充电了,那么剩下的路程先跑电速,没电脚蹬能求出一个时间,这个时间加上在j点充电的时间再加上DP[j]即为这种枚举情况的时间,每一次枚举找到最小值即可。


代码示例


#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<map>
#include<queue>
#include<iomanip>
const int MAX=150;
const double INF=0xffffff;
double DP[MAX];//DP[i]表示到第i个加油站的最小耗费时间
int s[MAX];//s[i]表示到第i个加电站距离起点的距离
using namespace std;

double Min(double x,double y)
{
	return x>y?y:x;
}

int main()
{
	double l,len,time;
	int n,c;
	double needt,vr,vt1,vt2;
	s[0]=0;
	while(cin>>l)
	{
		cin>>n>>c>>needt;
		cin>>vr>>vt1>>vt2;
		for(int i=1;i<=n;++i){
			cin>>s[i];
		}
		s[n+1]=l;
		DP[0]=0;
		for(int i=1;i<=n+1;++i){
			DP[i]=INF;
			for(int j=0;j<i;++j){
				len=s[i]-s[j];
				if(c>len){
					time=len/vt1;
				}
				else{
					time=(len-c)/vt2+c/vt1;
				}
				time+=DP[j];
				if(j>0){
					time+=needt;
				}
				DP[i]=Min(time,DP[i]);
			}
		}
		if(DP[n+1]<(l/vr)) cout<<"What a pity rabbit!"<<endl;
		else cout<<"Good job,rabbit!"<<endl;
	}
	return 0;
}


 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值