数论概论读书笔记 27.欧拉函数与因数和

欧拉函数与因数和

前面我们在说明完全数的时候,引入了因子和函数 σ(x) σ ( x ) ,通常 σ(x) σ ( x ) 是大于 x x 的。

现在我们做个猜想,不对因子直接求和,而先求欧拉函数再求和。

猜想d1,d2,...,dr是整除 n n 的数,其中包括1与n,则

φ(d1)+φ(d2)+φ(d3)+...+φ(dr)=n

我们先试着验证 n=pk n = p k 的情况, n n 的因子有1,p,p2,...,pk ,由于 φ(pk)=pkpk1 φ ( p k ) = p k − p k − 1 ,则

1+(p1)+(p2p)+...+(pk1pk2)+(pkpk1)=pk 1 + ( p − 1 ) + ( p 2 − p ) + . . . + ( p k − 1 − p k − 2 ) + ( p k − p k − 1 ) = p k

对的。

再尝试下 n=pq n = p q n n 的因子有1,p,q,pq,则

1+p1+q1+(p1)(q1)=pq 1 + p − 1 + q − 1 + ( p − 1 ) ( q − 1 ) = p q

对的。

下面准备处理一般情况。

定义函数 F(n)=d|nφ(d) F ( n ) = ∑ d | n φ ( d ) ,我们要证明 F(n)=n F ( n ) = n

断言1 如果 gcd(m,n)=1 g c d ( m , n ) = 1 ,则 F(mn)=F(m)F(n) F ( m n ) = F ( m ) F ( n )

证明:

d1,d2,...,drne1,e2,...,esm d 1 , d 2 , . . . , d r 是 n 的 因 数 e 1 , e 2 , . . . , e s 是 m 的 因 数

m,n m , n 互质的事实说明, mn m n 的因子就是上面 r r 个因子和s个因子两两相乘得到的,共 rs r s 个。

di d i ej e j 互质,则 φ(diej)=φ(di)φ(ej) φ ( d i e j ) = φ ( d i ) φ ( e j ) ,则

F(mn)=φ(d1e1)+φ(d1e2)+...+φ(dr)φ(e1)+...+φ(dr)φ(es)=[φ(d1)+φ(d2)+...+φ(dr)][φ(e1)+φ(e2)+...+φ(es)]=F(n)F(m)(1)(2)(3) (1) F ( m n ) = φ ( d 1 e 1 ) + φ ( d 1 e 2 ) + . . . + φ ( d r ) φ ( e 1 ) + . . . + φ ( d r ) φ ( e s ) (2) = [ φ ( d 1 ) + φ ( d 2 ) + . . . + φ ( d r ) ] ∗ [ φ ( e 1 ) + φ ( e 2 ) + . . . + φ ( e s ) ] (3) = F ( n ) ∗ F ( m )

证毕。

欧拉 φ φ 函数求和公式 F(n)=d|nφ(d)=n F ( n ) = ∑ d | n φ ( d ) = n

证明: 我们已经证明了,对于素数次幂有 F(pk)=pk F ( p k ) = p k ,将一个数 n n 质因数分解后,比如n=p1k1p2k2...prkr

由于不同的素数次幂是互质的,所以由 F(n) F ( n ) 的积性,易得 F(n)=n F ( n ) = n

证毕。


刘维尔函数 λ(n) λ ( n ) 定义为将 n n 分解后,n=p1k1p2k2...prkr,令 λ(n)=(1)k1+k2+...+kr λ ( n ) = ( − 1 ) k 1 + k 2 + . . . + k r λ(1)=1 λ ( 1 ) = 1

Ω(n)=k1+k2+...+kr Ω ( n ) = k 1 + k 2 + . . . + k r λ(n)=(1)Ω(n) λ ( n ) = ( − 1 ) Ω ( n )

刘维尔函数是积性函数。 刘维尔函数的狄利克雷逆变换是莫比乌斯函数的绝对值。

使用刘维尔函数定义新的函数 G(n) G ( n )

G(n)=λ(d1)+λ(d2)+...+λ(dr)=d|nλ(d) G ( n ) = λ ( d 1 ) + λ ( d 2 ) + . . . + λ ( d r ) = ∑ d | n λ ( d )

G(n) G ( n ) 也是积性函数。其满足下面的性质

\sum _{​{d|n}}\lambda (d)={\begin{cases}1&{\text{if }}n{\text{ is a perfect square,}}\\0&{\text{otherwise.}}\end{cases}}

补充:

The Pólya conjecture is a conjecture made by George Pólya in 1919. Defining

L(n)=k=1nλ(k)(oeis A002819) L ( n ) = ∑ k = 1 n λ ( k ) ( o e i s   A 002819 )

the conjecture states that L(n)0 L ( n ) ≤ 0 for n>1 n > 1 .This turned out to be false. The smallest counter-example is n = 906150257, found by Minoru Tanaka M i n o r u   T a n a k a in 1980. It has since been shown that L(n) > 0.0618672√n for infinitely many positive integers n,[1] while it can also be shown via the same methods that L(n) < -1.3892783√n for infinitely many positive integers n.[2]


t次幂 σ σ 函数

σt(n)=d|ndt σ t ( n ) = ∑ d | n d t

σ1(n) σ 1 ( n ) 就是我们熟知的 σ(n) σ ( n )

σ0(n) σ 0 ( n ) 是数 n n 的因子个数

对于σt(pk) t=1 t = 1 时前面已经推出其公式, t>1 t > 1 时,也有公式。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值