再论三角平方数
定理 (三角平方数定理)
- 方程 x2−2y2=1 x 2 − 2 y 2 = 1 的每个正整数解都可通过将 3+22–√ 3 + 2 2 自乘得到,即解 (xk,yk) ( x k , y k ) 可以通过展开下式得到。
xk+yk2–√=(3+22–√)k,k=1,2,3,...
x
k
+
y
k
2
=
(
3
+
2
2
)
k
,
k
=
1
,
2
,
3
,
.
.
.
- 每个三角平方数 n2=12m(m+1) n 2 = 1 2 m ( m + 1 ) 由
m=xk−12,n=yk2,k=1,2,3,...
m
=
x
k
−
1
2
,
n
=
y
k
2
,
k
=
1
,
2
,
3
,
.
.
.
给出,其中 (xk,yk) ( x k , y k ) 是由(1)得到的解
证明 降阶法,具体见书
将上面(1)式中的
2–√
2
换成
−2–√
−
2
后公式仍然成立。也就是说
xk−yk2–√=(3−22–√)k,k=1,2,3,...
x
k
−
y
k
2
=
(
3
−
2
2
)
k
,
k
=
1
,
2
,
3
,
.
.
.
若将(1)和(3)相加后除2,则得到关于 xk x k 的公式:
xk=(3+22–√)k+(3−22–√)k2
x
k
=
(
3
+
2
2
)
k
+
(
3
−
2
2
)
k
2
同理,
yk=(3+22–√)k−(3−22–√)k22–√
y
k
=
(
3
+
2
2
)
k
−
(
3
−
2
2
)
k
2
2
这些关于 xk,yk x k , y k 的公式是很有用的,因为
3+22–√≈5.82843,3−22–√≈0.17157
3
+
2
2
≈
5.82843
,
3
−
2
2
≈
0.17157
由于是 0.17.. 0.17.. ,所以取 k k 次幂很接近0
这样可以较容易的算出
由上面讨论知,三角平方数有无数多个