数论概论读书笔记 31.再论三角平方数

再论三角平方数

定理 (三角平方数定理)

  • 方程 x22y2=1 x 2 − 2 y 2 = 1 每个正整数解都可通过将 3+22 3 + 2 2 自乘得到,即解 (xk,yk) ( x k , y k ) 可以通过展开下式得到。

xk+yk2=(3+22)k,k=1,2,3,... x k + y k 2 = ( 3 + 2 2 ) k , k = 1 , 2 , 3 , . . .

  • 每个三角平方数 n2=12m(m+1) n 2 = 1 2 m ( m + 1 )

m=xk12,n=yk2,k=1,2,3,... m = x k − 1 2 , n = y k 2 , k = 1 , 2 , 3 , . . .

给出,其中 (xk,yk) ( x k , y k ) 是由(1)得到的解

证明 降阶法,具体见书

将上面(1)式中的 2 2 换成 2 − 2 后公式仍然成立。也就是说

xkyk2=(322)k,k=1,2,3,... x k − y k 2 = ( 3 − 2 2 ) k , k = 1 , 2 , 3 , . . .

若将(1)和(3)相加后除2,则得到关于 xk x k 的公式:
xk=(3+22)k+(322)k2 x k = ( 3 + 2 2 ) k + ( 3 − 2 2 ) k 2

同理,
yk=(3+22)k(322)k22 y k = ( 3 + 2 2 ) k − ( 3 − 2 2 ) k 2 2

这些关于 xk,yk x k , y k 的公式是很有用的,因为
3+225.82843,3220.17157 3 + 2 2 ≈ 5.82843 , 3 − 2 2 ≈ 0.17157

由于是 0.17.. 0.17.. ,所以取 k k 次幂很接近0

这样可以较容易的算出xk,yk

由上面讨论知,三角平方数有无数多个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值