算法上主要涉及栈的应用,包括括号匹配、删除相邻重复项、求逆波兰表达式
Java涉及字符数组转换为字符串的方式 、Integer与String类型互转
20. 有效的括号
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()" 输出:true
示例 2:
输入:s = "()[]{}" 输出:true
示例 3:
输入:s = "(]" 输出:false
思路
栈这种数据结构非常适合做对称匹配类的题目,首先明确,字符串中括号不匹配有三种情况,左括号多余/右括号多余/括号没有多余,但是类型不匹配 然后 采取匹配左括号时,右括号先入栈的技巧,就只需要比较当前元素与栈顶元素相不相等即可。
import java.util.Stack;
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public boolean isValid(String s) {
Stack<Character> stack = new Stack<>();
for(char c : s.toCharArray()){
if(c == '('){
stack.push(')');
}else if(c == '{'){
stack.push('}');
}else if(c == '['){
stack.push(']');
//右括号多余:遍历字符串匹配的过程中,栈已经空了,没有匹配的字符了,也就是右括号没有找到对应的左括号 此时返回false
//第三种 没有括号多余的情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
}else if(stack.isEmpty() || stack.peek() != c){
return false;
}else{
stack.pop();
}
}
//左括号多余:遍历后非空,说明左括号没有找到对应的右括号 return false
return stack.empty();
}
}
//leetcode submit region end(Prohibit modification and deletion)
1047. 删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S
,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca" 输出:"ca" 解释: 例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
思路
栈
与20类似的模拟思路,利用栈存放遍历完的结果字符串,在加入栈时检测是否出现了相邻重复项,出现则将栈顶元素pop出来,否则当前元素入栈。遍历完成后栈内元素即为结果
import java.util.Stack;
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public String removeDuplicates(String s) {
Stack<Character> st = new Stack<>();
for(char c : s.toCharArray()){
if(st.isEmpty()){
st.push(c);
}else if(st.peek() != c){
st.push(c);
}else {
st.pop();
}
}
StringBuilder sb = new StringBuilder();
while(!st.isEmpty()){
sb.append(st.pop());
}
return sb.reverse().toString();
}
}
//leetcode submit region end(Prohibit modification and deletion)
双指针
精妙之处在于 遍历过程中,直接使用fast指针覆盖掉slow的值,若遇到前后相同,则slow--,使得下次fast可以覆盖掉
注意将字符数组转换为字符串的方式
import java.util.Stack;
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public String removeDuplicates(String s) {
int slow = 0, fast = 0;
char [] res = s.toCharArray();
while(fast < s.length()){
res[slow] = res[fast];
if(slow > 0 && res[slow] == res[slow-1]){
slow--;
}else{
slow++;
}
fast++;
}
//String item = new String(b, n, m)的用法,其中b为byte[]数组,n,m为int类型.
//简单的来说就是byte数组b从下标为n开始前进m个下标的那一段数组变为字符串item。
//因此 此处slow指的是个数(符合题目要求的结果字符串长度)
return new String(res, 0 , slow);
//return String.valueOf(res,0 , slow);
}
}
//leetcode submit region end(Prohibit modification and deletion)
150. 逆波兰表达式求值
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释:该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
思路
栈
import java.util.Stack;
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int evalRPN(String[] tokens) {
Stack<String> st = new Stack<>();
for(String c :tokens){
if(c.equals("+") || c.equals("-") || c.equals("*") || c.equals("/")){
int a1,a2,result = 0;
a1 = Integer.parseInt(st.pop());
a2 = Integer.parseInt(st.pop());
//result == a2 c a1
//在 Java 中,可以使用 Integer.parseInt() 或 Integer.valueOf() 将 String 转换为 int。
if(c.equals("+")){
result = a2 + a1;
}else if(c.equals("-")){
result = a2 - a1;
}else if(c.equals("*")){
result = a2 * a1;
}else{
result = a2 / a1;
}
st.push(Integer.toString(result));
}else{
st.push(c);
}
}
return Integer.parseInt(st.pop());
}
}
//leetcode submit region end(Prohibit modification and deletion)