代码随想录day41 | 动态规划P3 | ● 343 ● 96

343. 整数拆分 

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

思路

动态规划五步曲

        1. 确定dp数组以及下标含义  dp[i]:分拆数字i,可以得到的最大乘积dp[i];

        2. 确定递推公式 从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那么 dp[i] = Math.max(dp[i],Math.max(dp[i-j]*j , (i-j)*j)); 外层相当于取最大的乘积

代码

class Solution {
    public int integerBreak(int n) {
        // 动态规划五步曲-确定dp数组含义-递推公式-dp初始化-确定遍历顺序-举例推导dp
        // 1 dp[i]:分拆数字i,可以得到的最大乘积dp[i];
        // 2 dp[i] = max(dp[i],(dp[i-j]*j , (i-j)*j))
        int [] dp = new int [n+1];
        dp[2] = 1;
        for(int i=3; i < n+1; i++){
            for(int j = 1; j < i-1; j++){
                dp[i] = Math.max(dp[i],Math.max(dp[i-j]*j , (i-j)*j));
            }
        }
        return dp[n];
    }
}

96.不同的二叉搜索树 

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

思路

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

96.不同的二叉搜索树2

那么, 动态规划五步曲:

        1. dp[n] 表示由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 的种类

        2. dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]; 即dp[n] += dp[j-1]*dp[n-j] j 从1 遍历到 n

        3. dp[0] = 1

        4. dp[n] 依赖于 前面所有dp 所以从左往右递归

        5. dp[1] = dp[0]*dp[0] = 1

                dp[2] = dp[1]*dp[1] + dp[1]*dp[1] = 1 + 1 = 2

                        ...

代码

class Solution {
    public int numTrees(int n) {
        // dp[i] 表示 由i个节点组成的 不同二叉树的种类
        // dp[i] += dp[j-1]*dp[i-j] j 从 1 到 i
        int []dp = new int [n+1];
        dp[0] = 1;
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= i; j++){
                dp[i] += dp[j-1] * dp[i-j];
            }
        }
        return dp[n];
    }
}

总结

首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。

然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。

可以看出我依然还是用动规五部曲来进行分析,会把题目的方方面面都覆盖到!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值