343. 整数拆分
给定一个正整数 n
,将其拆分为 k
个 正整数 的和( k >= 2
),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
示例 1:
输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
思路
动态规划五步曲
1. 确定dp数组以及下标含义 dp[i]:分拆数字i,可以得到的最大乘积dp[i];
2. 确定递推公式 从1遍历j,然后有两种渠道得到dp[i].
一个是j * (i - j) 直接相乘。
一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。
那么 dp[i] = Math.max(dp[i],Math.max(dp[i-j]*j , (i-j)*j)); 外层相当于取最大的乘积
代码
class Solution {
public int integerBreak(int n) {
// 动态规划五步曲-确定dp数组含义-递推公式-dp初始化-确定遍历顺序-举例推导dp
// 1 dp[i]:分拆数字i,可以得到的最大乘积dp[i];
// 2 dp[i] = max(dp[i],(dp[i-j]*j , (i-j)*j))
int [] dp = new int [n+1];
dp[2] = 1;
for(int i=3; i < n+1; i++){
for(int j = 1; j < i-1; j++){
dp[i] = Math.max(dp[i],Math.max(dp[i-j]*j , (i-j)*j));
}
}
return dp[n];
}
}
96.不同的二叉搜索树
给你一个整数 n
,求恰由 n
个节点组成且节点值从 1
到 n
互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
示例 1:
输入:n = 3 输出:5
示例 2:
输入:n = 1 输出:1
思路
当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!
(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)
当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!
当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!
发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。
dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
如图所示:
那么, 动态规划五步曲:
1. dp[n] 表示由 n
个节点组成且节点值从 1
到 n
互不相同的 二叉搜索树 的种类
2. dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]; 即dp[n] += dp[j-1]*dp[n-j] j 从1 遍历到 n
3. dp[0] = 1
4. dp[n] 依赖于 前面所有dp 所以从左往右递归
5. dp[1] = dp[0]*dp[0] = 1
dp[2] = dp[1]*dp[1] + dp[1]*dp[1] = 1 + 1 = 2
...
代码
class Solution {
public int numTrees(int n) {
// dp[i] 表示 由i个节点组成的 不同二叉树的种类
// dp[i] += dp[j-1]*dp[i-j] j 从 1 到 i
int []dp = new int [n+1];
dp[0] = 1;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= i; j++){
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}
}
总结
首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。
然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。
可以看出我依然还是用动规五部曲来进行分析,会把题目的方方面面都覆盖到!