代码随想录day49 | 动态规划P10 | ● 121. ● 122.

文章讲述了如何使用贪心算法和动态规划解决买卖股票的问题,分别针对一次交易和多次交易的不同情况,通过计算持有和不持有股票的最优化策略来获取最大利润。
摘要由CSDN通过智能技术生成

121. 买卖股票的最佳时机 

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

思路

贪心

买卖一次 , 取最左 最小的买, 最右最大的卖.

动态规划

当前状态分为两种,持有股票 / 不持有, 相应的分别可以从上一状态推出

动规五部曲分析如下:

        1. 确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

        2. 确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

        3. dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

        4.确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

        5. 举例推导dp数组

代码

贪心

class Solution {
	public int maxProfit(int[] prices) {
		//因为仅买卖一次 取最左最小值,取最右最大值,那么得到的差值就是最大利润。
		int min = prices[0];
        int res = 0;
        for(int i = 0; i<prices.length; i++){
            // 取最左最小价格
            min = Math.min(prices[i], min);
            // 直接取最大区间利润
            res = Math.max(res, prices[i] - min);
        }
        return res;
	}
}

动态规划

class Solution {
	public int maxProfit(int[] prices) {
		// dp[i][0] 表示 第i天持有股票的最多现金  dp[i][1] 表示第i天不持有股票的最多现金
		int[][] dp = new int[prices.length][2];

		dp[0][0] = 0 - prices[0];

		dp[0][1] = 0;

		//递推公式
		//dp[i][0] = max(dp[i-1][0], - prices[i])
		//dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])

		for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i-1][0], - prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
		}
        return dp[prices.length - 1][1];
	}
}

122.买卖股票的最佳时机II 

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
     总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
     总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

思路

贪心

最多持有一只股票, 当前只能选择买 / 卖; 利润分解到每天, 仅记录正利润即可

动态规划

可以多次买卖了, 因此dp递推公式变化, 区别在于 推导dp[i][0]的时候,第i天买入股票的情况

dp[i][0] 表示第i天持有股票所得最多现金;  dp[i][1] 表示第i天不持有股票所得最多现金

在动规五部曲中,这个区别主要是体现在递推公式上,其他都和lc 121.一样一样的

所以我们重点讲一讲递推公式。

这里重申一下dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

注意这里和 lc121.唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况

在 lc121. 中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

代码

贪心

class Solution {
	public int maxProfit(int[] prices) {
		// 最多一股
		// 当前只能买 / 卖
		int pro = 0;
		for (int i = 0; i < prices.length - 1; i++) {
			//利润分解, 只搜集正利润
			pro += Math.max(0, prices[i + 1] - prices[i]);
		}
		return pro;
	}
}

动态规划

class Solution {
	public int maxProfit(int[] prices) {
		// 最多一股
		// 当前只能买 / 卖
		// dp[i][0] 表示 第i天持有股票的最多现金  dp[i][1] 表示第i天不持有股票的最多现金
		int[][] dp = new int[prices.length][2];

		dp[0][0] = 0 - prices[0];

		dp[0][1] = 0;

		//递推公式
		//dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
		//dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])

		for (int i = 1; i < prices.length; i++) {
            // 与上一题唯一不同的地方   因为可以多次买卖了
            // 那么第i天持有股票的来源就可能是 i - 1 天不持有 再买入 第i天
			dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]);
			dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
		}
		return dp[prices.length - 1][1];
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值