121. 买卖股票的最佳时机
给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
示例 1:
输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
思路
贪心
买卖一次 , 取最左 最小的买, 最右最大的卖.
动态规划
当前状态分为两种,持有股票 / 不持有, 相应的分别可以从上一状态推出
动规五部曲分析如下:
1. 确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?
其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
很多同学把“持有”和“买入”没区分清楚。
在下面递推公式分析中,我会进一步讲解。
2. 确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
这样递推公式我们就分析完了
3. dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5. 举例推导dp数组
代码
贪心
class Solution {
public int maxProfit(int[] prices) {
//因为仅买卖一次 取最左最小值,取最右最大值,那么得到的差值就是最大利润。
int min = prices[0];
int res = 0;
for(int i = 0; i<prices.length; i++){
// 取最左最小价格
min = Math.min(prices[i], min);
// 直接取最大区间利润
res = Math.max(res, prices[i] - min);
}
return res;
}
}
动态规划
class Solution {
public int maxProfit(int[] prices) {
// dp[i][0] 表示 第i天持有股票的最多现金 dp[i][1] 表示第i天不持有股票的最多现金
int[][] dp = new int[prices.length][2];
dp[0][0] = 0 - prices[0];
dp[0][1] = 0;
//递推公式
//dp[i][0] = max(dp[i-1][0], - prices[i])
//dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i-1][0], - prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp[prices.length - 1][1];
}
}
122.买卖股票的最佳时机II
给你一个整数数组 prices
,其中 prices[i]
表示某支股票第 i
天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
输入:prices = [7,1,5,3,6,4] 输出:7 解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。 总利润为 4 + 3 = 7 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。 总利润为 4 。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。
思路
贪心
最多持有一只股票, 当前只能选择买 / 卖; 利润分解到每天, 仅记录正利润即可
动态规划
可以多次买卖了, 因此dp递推公式变化, 区别在于 推导dp[i][0]的时候,第i天买入股票的情况。
dp[i][0] 表示第i天持有股票所得最多现金; dp[i][1] 表示第i天不持有股票所得最多现金
在动规五部曲中,这个区别主要是体现在递推公式上,其他都和lc 121.一样一样的。
所以我们重点讲一讲递推公式。
这里重申一下dp数组的含义:
- dp[i][0] 表示第i天持有股票所得现金。
- dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
注意这里和 lc121.唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。
在 lc121. 中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。
而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。
代码
贪心
class Solution {
public int maxProfit(int[] prices) {
// 最多一股
// 当前只能买 / 卖
int pro = 0;
for (int i = 0; i < prices.length - 1; i++) {
//利润分解, 只搜集正利润
pro += Math.max(0, prices[i + 1] - prices[i]);
}
return pro;
}
}
动态规划
class Solution {
public int maxProfit(int[] prices) {
// 最多一股
// 当前只能买 / 卖
// dp[i][0] 表示 第i天持有股票的最多现金 dp[i][1] 表示第i天不持有股票的最多现金
int[][] dp = new int[prices.length][2];
dp[0][0] = 0 - prices[0];
dp[0][1] = 0;
//递推公式
//dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
//dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
for (int i = 1; i < prices.length; i++) {
// 与上一题唯一不同的地方 因为可以多次买卖了
// 那么第i天持有股票的来源就可能是 i - 1 天不持有 再买入 第i天
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp[prices.length - 1][1];
}
}