123.买卖股票的最佳时机III
给定一个数组,它的第 i
个元素是一支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1] 输出:0
思路
相较于前两题(lc 121 lc122) 关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
这就需要标记一天的五种状态
- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
其余同理
代码
class Solution {
public int maxProfit(int[] prices) {
// 0 无操作;1 第一次持有;2 第一次不持有;3 第二次持有;4 第二次不持有
int[][] dp = new int[prices.length][5];
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.length; i++) {
dp[i][0] = dp[i-1][0];
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
dp[i][2] = Math.max(dp[i-1][2], dp[i-1][1] + prices[i]);
dp[i][3] = Math.max(dp[i-1][3], dp[i-1][2] - prices[i]);
dp[i][4] = Math.max(dp[i-1][4], dp[i-1][3] + prices[i]);
}
return dp[prices.length - 1][4];
}
}
188.买卖股票的最佳时机IV
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3] 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
思路
与lc123 差别在于指定了次数k , 那么定义 2*k + 1 种状态即可
代码最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。
代码
class Solution {
public int maxProfit(int k, int[] prices) {
//k * 2 + 1 种状态
int[][] dp = new int[prices.length][k * 2 + 1];
//初始化
for(int i = 1; i < k*2 + 1; i+=2){
dp[0][i] = -prices[0];
}
//递推
for (int i = 1; i < prices.length; i++) {
dp[i][0] = dp[i-1][0];
for(int j = 1; j < 2*k + 1; j++){
//奇数状态买入 偶数状态卖出
if(j % 2 == 1) dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-1] - prices[i]);
else dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-1] + prices[i]);
}
}
return dp[prices.length - 1][2*k];
}
}