题目:
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
思路:
首先,因为我们要将4位正整数的每 个数拿出来进行递增和递减排序,所以我们需要写一个函数进行转换,将数字转换为数组
其次,又需要将排序后的数组转换为数字进行相减,所以需要写一个函数进行转换;
然后,我这里就不自己写排序的函数了,用了C++本身的排序函数sort,具体的介绍可以看https://blog.csdn.net/Fhujinwu/article/details/105453010
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
/**
**数字黑洞
**@author Fhujinwu
*/
int cmp(int a,int b) //递减排序
{
return a>b;
}
//将数字转换为数组
void to_array(int n,int num[])
{
int i;
for(i=0;i<4;i++)
{
num[i]=n%10;
n/=10;
}
}
//将数组转为数字
int to_number(int num[]){
int sum=0;
for(int i=0;i<4;i++){
sum=sum*10+num[i];
}
return sum;
}
int main()
{
int n,max,min;
int num[5];
scanf("%d",&n);
while(1)
{ //将数字转换为数组;
to_array(n,num);
//进行递增排序
sort(num,num+4);
min=to_number(num);
//递减排序
sort(num,num+4,cmp);
max=to_number(num);
n=max-min;
printf("%04d - %04d = %04d\n",max,min,n);
if(n==0||n==6174) break;
}
return 0;
}