# 1 基于大数据的K-means广告效果分析
使用的数据工具为mysql 和 tableau
对于cpc模式,点击率 = 点击量 / 展示量,可以使用点击量衡量投放效果,对于品牌来说,是根据点击量来进行付费的,点击率则可以体现广告的吸引力。
对于cpa模式,可以构建两个漏斗,即浏览—收藏—购买,浏览—加入购物车—购买,观察转换率可以衡量投放效果。
2 基于大数据人才岗位数据分析
这是一份来自厦门人才网的企业招聘数据,采集日期为 2021-01-14,总计 100,077 条记录,大小为 122 M,包含 19 个字段。
使用 pandas 对数据进行清洗,主要包括:去重、缺失值填充、格式化、计算冗余字段。
3 深度学习安全帽佩戴检测系统
佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此对施工现场建筑工人佩戴安全帽自动实时检测进行探究。
本项目基于yolov5实现了安全帽和危险区域检测。
4 基于深度学习的数学公式识别算法实现
公式识别是OCR领域一个非常有挑战性的工作,工作的难点在于它是一个二维的数据,因此无法用传统的CRNN进行识别。
编码的部分采用的是传统的卷积神经网络,该网络主要有6层组成,最终得到[N x H x W x C ]大小的特征。其中:N表示数据的batch数;W、H表示输出的大小,这里W,H是不固定的,从数据集的输入来看我们的输入为固定的buckets。
5 基于深度学习卷积神经网络的花卉识别
花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。
预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。