已做BCDEFGJ
B.乐团派对
刚开始想了个贪心,结果不对然后直接转头想dp了。
将能力值排序。
首先我们先分出来一组,能力值最大的分出来一组人数是
a
n
a_n
an即下标是
n
−
a
n
+
1
→
n
n-a_n+1\to n
n−an+1→n分出来一组,目前还剩
n
−
a
n
n-a_n
n−an个人待分配,然后考虑设计dp
状态表示:
f
i
f_i
fi考虑前
1
1
1~
i
i
i个人分成的最多组数
状态转移:目前第
i
i
i个人可以与前面的人一组,也可以把它丢到最开始分出来的那一组于是不难得出:
f
i
=
m
a
x
(
f
i
−
1
,
f
i
−
a
i
+
1
)
f_i=max(f_{i-1},f_{i-a_i}+1)
fi=max(fi−1,fi−ai+1)
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0)
#pragma GCC optimize(2)
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N=100010;
const int INF=0x3f3f3f3f;
int a[N],f[N];
int n;
int main()
{
IO;
int T=1;
//cin>>T;
while(T--)
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
sort(a+1,a+1+n);
if(a[n]>n)
{
cout<<-1<<'\n';
continue;
}
n=n-a[n];
for(int i=1;i<=n;i++)
{
int j=max(0,i-a[i]);
f[i]=max(f[i-1],f[j]+1);
}
cout<<f[n]+1<<'\n';
}
return 0;
}
C.光玉小镇
由于坏掉的电线杆数目很小,我们可以用bfs预处理以家和每个电线杆为起点到达其他电线杆距离的最小值。
直接枚举电线杆的顺序查表求最值即可。
全排列枚举 ( c n t ! ) (cnt!) (cnt!)会超时需要状态压缩dp枚举 ( 2 c n t ) (2^{cnt}) (2cnt)。
写本题的时候发现unordered_map
的键值key
不能是pair
,举体原因请参考大佬博客加上一些代码就可以使用了。
#include<functional>
template <typename T>
inline void hash_combine(std::size_t &seed, const T &val) {
seed ^= std::hash<T>()(val) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
// auxiliary generic functions to create a hash value using a seed
template <typename T> inline void hash_val(std::size_t &seed, const T &val) {
hash_combine(seed, val);
}
template <typename T, typename... Types>
inline void hash_val(std::size_t &seed, const T &val, const Types &... args) {
hash_combine(seed, val);
hash_val(seed, args...);
}
template <typename... Types>
inline std::size_t hash_val(const Types &... args) {
std::size_t seed = 0;
hash_val(seed, args...);
return seed;
}
struct pair_hash {
template <class T1, class T2>
std::size_t operator()(const std::pair<T1, T2> &p) const {
return hash_val(p.first, p.second);
}
};
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0)
#pragma GCC optimize(2)
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N=210;
const ll INF=1e18;
int n,m,t;
char g[N][N];
unordered_map<pii,int,pair_hash> mp;
pii pos[20];
int dist[20][20],a[20];
bool st[N][N];
int d[N][N];
queue<pii> q;
int dx[]={1,-1,0,0},dy[]={0,0,1,-1};
ll f[1<<16][17];
void bfs(int now)
{
q.push(pos[now]);
memset(d,0x3f,sizeof d);
memset(st,0,sizeof st);
d[pos[now].first][pos[now].second]=0;
while(q.size())
{
int x=q.front().first,y=q.front().second;q.pop();
if(st[x][y]) continue;
st[x][y]=1;
if(g[x][y]!='.') dist[now][mp[{x,y}]]=d[x][y];
for(int i=0;i<4;i++)
{
int a=x+dx[i],b=y+dy[i];
if(a<1||b<1||a>n||b>m||g[a][b]=='#') continue;
if(d[a][b]>d[x][y]+1)
{
d[a][b]=d[x][y]+1;
q.push({a,b});
}
}
}
}
int main()
{
IO;
int T=1;
//cin>>T;
while(T--)
{
cin>>n>>m>>t;
for(int i=1;i<=n;i++) cin>>g[i]+1;
int cnt=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(g[i][j]=='S') mp[{i,j}]=0,pos[0]={i,j};
else if(g[i][j]=='T') mp[{i,j}]=++cnt,pos[cnt]={i,j};
}
memset(dist,0x3f,sizeof dist);
for(int i=0;i<=cnt;i++) bfs(i);
memset(f,0x3f,sizeof f);
f[1][0]=0;
for(int i=0;i<1<<cnt+1;i++)
for(int j=0;j<=cnt;j++)
if(i>>j&1)
for(int k=0;k<=cnt;k++)
if((i-(1<<j))>>k&1)
f[i][j]=min(f[i][j],f[i-(1<<j)][k]+dist[k][j]);
ll res=INF;
for(int i=1;i<=cnt;i++)
res=min(res,f[(1<<cnt+1)-1][i]+dist[i][0]);
if(res>=0x3f3f3f3f)
cout<<-1<<'\n';
else
{
res+=1ll*t*cnt;
cout<<res<<'\n';
}
}
return 0;
}
D.巅峰对决
数据保证,任何时候这n个数字均互不相同。
这个条件非常重要,有了这个条件直接用线段树维护一下区间最大值和最小值即可:如果最大值和最小值的差等于坐标差就满足题意否则不满足。
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0)
#pragma GCC optimize(2)
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N=100010;
const int INF=0x3f3f3f3f;
int a[N];
int n,q;
struct node
{
int l,r;
int mx,mn;
}tree[N*4];
void pushup(int u)
{
tree[u].mx=max(tree[u<<1|1].mx,tree[u<<1].mx);
tree[u].mn=min(tree[u<<1|1].mn,tree[u<<1].mn);
}
void build(int u,int l,int r)
{
tree[u]={l,r,-INF,INF};
if(l==r)
{
tree[u].mn=tree[u].mx=a[l];
return;
}
int mid=l+r>>1;
build(u<<1,l,mid);build(u<<1|1,mid+1,r);
pushup(u);
}
void modify(int u,int pos,int val)
{
if(tree[u].l==tree[u].r)
{
tree[u].mn=tree[u].mx=val;
return;
}
int mid=tree[u].l+tree[u].r>>1;
if(pos<=mid) modify(u<<1,pos,val);
else modify(u<<1|1,pos,val);
pushup(u);
}
int querymx(int u,int l,int r)
{
if(tree[u].l>=l&&tree[u].r<=r) return tree[u].mx;
int mid=tree[u].r+tree[u].l>>1;
int v=-INF;
if(l<=mid) v=max(v,querymx(u<<1,l,r));
if(r>mid) v=max(v,querymx(u<<1|1,l,r));
return v;
}
int querymn(int u,int l,int r)
{
if(tree[u].l>=l&&tree[u].r<=r) return tree[u].mn;
int mid=tree[u].r+tree[u].l>>1;
int v=INF;
if(l<=mid) v=min(v,querymn(u<<1,l,r));
if(r>mid) v=min(v,querymn(u<<1|1,l,r));
return v;
}
int main()
{
IO;
int T=1;
//cin>>T;
while(T--)
{
cin>>n>>q;
for(int i=1;i<=n;i++) cin>>a[i];
build(1,1,n);
while(q--)
{
int op,x,y;
cin>>op>>x>>y;
if(op==1) modify(1,x,y);
else
{
if(y-x==querymx(1,x,y)-querymn(1,x,y))
cout<<"YES\n";
else
cout<<"NO\n";
}
}
}
return 0;
}
F.核弹剑仙
正解是bitset+拓扑排序,由于数据范围很小随便搞都能过
我还是补一补正解吧,正好练习一下bitset使用。
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0)
#pragma GCC optimize(2)
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N=2010;
int h[N],e[N],ne[N],idx;
int d[N];
bitset<1005>b[N];
int n,m;
void add(int a,int b)
{
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
void topsort()
{
queue<int> q;
for(int i=1;i<=n;i++)
if(!d[i]) q.push(i);
while(q.size())
{
int t=q.front();q.pop();
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
b[j]|=b[t];
b[j][t]=1;
if(--d[j]==0) q.push(j);
}
}
}
int main()
{
IO;
int T=1;
//cin>>T;
while(T--)
{
memset(h,-1,sizeof h);
cin>>n>>m;
while(m--)
{
int a,b;
cin>>a>>b;
add(a,b);
d[b]++;
}
topsort();
for(int i=1;i<=n;i++)
cout<<b[i].count()<<'\n';
}
return 0;
}
剩下的题待做。
要加油哦~