两个玻璃球求临界楼层问题

利用两个玻璃球,寻找100层高楼摔碎临界楼层的最优策略。通过从14楼开始递减间隔的方式,最坏情况下仅需14次尝试就能确定临界楼层。该策略基于最坏情况的分析和迭代计算,确保在最少的尝试次数下找到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
有一栋100层高的大楼,给你两个完全相同的玻璃球。假设从某一层开始,丢下玻璃球会摔碎。那么怎么利用手中的两个球,用什么最优策略知道这个临界的层是第几层。


问题答案:

考虑best-worse case最坏情况下最优。也就是说假如你的算法是从第一楼逐楼往上试,那么相应最坏的情况是在100楼破,相应的是一百次。
这种情况下最优策略也就是从14楼开始递减间隔的办法,worst case 需要14次。

 14 , 27(14 + 13) , 39(27 + 12) , 50(39 + 11) , 60(50 + 10) , 69(60 + 9) , 77(69 + 8) ,84(77 + 7) , 90(84 + 6) , 95(90 + 5) ࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值