【LeetCode】剑指 Offer 43. 1~n 整数中 1 出现的次数

原题链接戳这⬅️

输入一个整数 n ,求1~n这n个整数的十进制表示中1出现的次数。

例如,输入12,1~12这些整数中包含1 的数字有1、10、11和12,1一共出现了5次。

示例1:

输入:n = 12
输出:5

示例2:

输入:n = 13
输出:6

解题思路

首先,将问题转化为求解 1 ~ n 1~n 1n n n n 个整数中,第 i i i 位上出现 1 1 1 的次数,即当第 i i i 位取值为 1 1 1 时,求解存在多少个 < n <n <n 的不同整数。则,依次对个位、十位、百位… 求解并相加即可得到总次数。

最直观的写法如下:

class Solution:
    def countDigitOne(self, n: int) -> int:
        digits = str(n)
        N,count = len(digits),0
        # 遍历每一位数字,计算当idx位取值为1时,整数的个数
        for idx,d in enumerate(digits):
        	# 当高位部分数字小于N的高位部分时,低位任意取值,构成的数字均比N小
        	# idx == 0 表示当前位已经是最高位,故不存在该情况
            if idx > 0: count += int(digits[:idx]) * pow(10,N - idx - 1)
            
            # 考虑高位部分数字与N的取值相同的情况
            # 若当前位==0,则不存在取值为1的情况
            # 若当前位==1,则低位最大取值与N相同
            # 若当前位 >1,则低位任意取值
            if idx == N - 1: count += 1 if d != '0' else 0
            elif d != '0': count += int(digits[idx + 1:]) + 1 if d == "1" else pow(10,N - idx - 1)
        return count

在这里插入图片描述

进一步优化高位和低位数字的求解过程:

class Solution:
    def countDigitOne(self, n: int) -> int:
        high,low,cur = n,0,0
        count,pos = 0,1
        while high > 0:
            high, cur = high // 10, high % 10
            count += high * pos
            if cur > 0: count += low + 1 if cur == 1 else pos
            low, pos = low + cur * pos, pos * 10
        return count

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值