否定一种“组合数快速算法”

以下是转载的算法:

计算组合数最大的困难在于数据的溢出,对于大于150的整数n求阶乘很容易超出double类型的范围,那么当C(n,m)中的n=200时,直接用组合公式计算基本就无望了。另外一个难点就是效率。

对于第一个数据溢出的问题,可以这样解决。因为组合数公式为:
C(n,m) = n!/(m!(n-m)!)

为了避免直接计算n的阶乘,对公式两边取对数,于是得到:
ln(C(n,m)) = ln(n!)-ln(m!)-ln((n-m)!)

进一步化简得到:


这样我们就把连乘转换为了连加,因为ln(n)总是很小的,所以上式很难出现数据溢出。

为了解决第二个效率的问题,我们对上式再做一步化简。上式已经把连乘法变成了求和的线性运算,也就是说,上式已经极大地简化了计算的复杂度,但是还可以进一步优化。从上式中,我们很容易看出右边的3项必然存在重复的部分。现在我们把右边第一项拆成两部分:


这样,上式右边第一项就可以被抵消掉,于是得到:


上式直接减少了2m次对数计算及求和运算。但是这个公式还可以优化。对于上面公式里的求和,当m<n/2时,n-m是一个很大的数,但是当m>n/2时,n-m就会小很多。我们知道:
C(n,m) = C(n,n-m)

那么通过这个公式,我们可以把小于n/2的m变为大于n/2的n-m再进行计算,结果是一样的,但是却能减少计算量。

当计算出ln(C(n,m))后,只需要取自然对数,就可以得到组合数:
C(n,m) = exp(ln(C(n,m)))

这样就完成了组合数的计算。
用这种方法计算组合数,如果只计算ln(C(n,m))的话,n可以取到整型数据的极限值65535,
ln(C(65535,32767)) = 45419.6

而计算时间只需要0.01ms。当然,如果要取对数得到最终的组合数的话,n的取值就不能达到这么大了。但是这种算法仍然可以保证n取到1000以上,而不是开头说的150这个极限值。例如:
C(1000,500) = 2.70288e+299
计算时间仍然小于0.01ms。

采用我这种算法,不仅n的取值范围大,而且计算速度高,不像用递归算法实现这个问题的时候,很容易陷入递归层次太深而导致计算时间太长。

 

——————————————————

以下是我的吐槽:

这种方法表面上把乘法变成了加法,而且避免了溢出,但是却会遭遇浮点数表示不准确的问题。而且计算对数需要花费的时间绝对远远超过乘法。所以,这种计算组合数的方法,从理论上说应该比传统方法更慢也更不准确。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值