题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例
示例1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
广度优先遍历+剪枝
哎,还是太菜。没有想出简便的方法。
从最后一个元素出发,将其添加进队列,然后从后向前遍历数组,将可以到达这个位置的元素下标加入队列,然后队列里的数据继续这样处理,直到出现下标为零的元素或者队列为空。队列为空意味着没有任何途径可以到达数组末尾。
剪枝:逆序遍历时,当出现一个新的符合条件的下标时,丢弃队列里的最后一个下标。如示例1中。开始遍历时下标3满足条件,加入队列,然后继续向前遍历,发现标为1的元素也满足条件。则将下标3从队列中移除。因为前面的元素若是可到达下标3那它也一定定可以到达下标1。
public static boolean canJump(int[] nums) {
//逆序遍历获取能够直接到达坐标target的元素。
//然后继续逆序遍历,直到出现坐标0,或者队列为空
if (nums.length < 2)
return true;
Deque<Integer> index = new LinkedList<>();
index.add(nums.length - 1);
return getAccessibleIndex(nums, index);
}
private static boolean getAccessibleIndex(int[] nums, Deque<Integer> index) {
while (!index.isEmpty()) {
int size = index.size();
for (int i = 0; i < size; i++) {
int right = index.removeFirst();
for (int left = right - 1; left >= 0; left--) {
if (nums[left] >= right - left) {
if (!index.isEmpty())//剪枝
index.removeLast();
if (left == 0)
return true;
index.addLast(left);
}
}
}
}
return false;
}
贪心算法
此题实际上不需要知道具体的路径,只需要知道能跳跃的最大范围即可。之前的代码把具体的路径都求出来了,这显然浪费了许多的时间。
保存当前所能跳到的最大下标,当这个最大下标大于等于数组的最后一个下标时,意味着可以从0下标跳到最后一个下标。若当前坐标已经超过了所能到达的最大坐标,则直接返回false。
public static boolean canJump2(int[] nums) {
int maxD = 0;
for (int i = 0; i < nums.length; i++) {
if (i <= maxD) {
maxD = Math.max(maxD, i + nums[i]);
if (maxD >= nums.length - 1)
return true;
}else break;
}
return false;
}