Educational Codeforces Round 84 (Rated for Div. 2) A. Sum of Odd Integers

A. Sum of Odd Integers

题目链接-A. Sum of Odd Integers
在这里插入图片描述
在这里插入图片描述
题目大意
判断n能否表示为 k 个不同奇数之和,如果能输出YES,否则输出NO

解题思路

  • 1+3+5+⋯+(2k−1)=k2,由求和公式得前k个不同奇数的和为k2,所以可得n≥k2
  • 因为奇 * 奇=奇,奇 * 偶=偶,所以n,k奇偶性要相同

附上代码

#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=1e5+5;
typedef long long ll;
typedef pair<int,int> PII;
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	
	int t;
	cin>>t;
	while(t--){
		int n,k;
		cin>>n>>k;
		if(k>sqrt(n))
			cout<<"NO"<<endl;
		else{
			if((n-k)%2==0)
				cout<<"YES"<<endl;
			else
				cout<<"NO"<<endl;
		}
	} 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值