A. Sum of Odd Integers
题目链接-A. Sum of Odd Integers
题目大意
判断n能否表示为 k 个不同奇数之和,如果能输出YES,否则输出NO
解题思路
- 1+3+5+⋯+(2k−1)=k2,由求和公式得前k个不同奇数的和为k2,所以可得n≥k2
- 因为奇 * 奇=奇,奇 * 偶=偶,所以n,k奇偶性要相同
附上代码
#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=1e5+5;
typedef long long ll;
typedef pair<int,int> PII;
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int t;
cin>>t;
while(t--){
int n,k;
cin>>n>>k;
if(k>sqrt(n))
cout<<"NO"<<endl;
else{
if((n-k)%2==0)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
}
return 0;
}