E. Cyclic Components
题目链接-E. Cyclic Components
题目大意
给你
n
n
n个点和
m
m
m条边,求所构成图中单圈环的个数
解题思路
并
查
集
并查集
并查集
- 很明显单圈环每个点的度都为
2
2
2,所以我们可以用数组
cnt[]
记录每个点的度,只需要找度为 2 2 2的点即可 - 如果一条边两个顶点的度都为 2 2 2,我们可以用并查集判断两点是否在一个子图里
- 用并查集判断两个点父节点是否相同,如果父节点相同,就说明找到了环,
ans++
记录答案,否则就合并 - 具体操作见代码
附上代码
#pragma GCC optimize("-Ofast","-funroll-all-loops")
//#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double e=exp(1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=2e5+10;
typedef long long ll;
typedef pair<int,int> PII;
typedef unsigned long long ull;
int f[N];//记录每个点的父节点
int find(int x){//查找父节点
return f[x]==x?x:f[x]=find(f[x]);
}
void merge(int x,int y){//合并
f[find(x)]=find(y);
}
struct edge{
int x,y;
}s[N];//记录边
int cnt[N];
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int n,m,ans=0;
cin>>n>>m;
for(int i=1;i<=n;i++)
f[i]=i; //刚开始每个点父节点都是自身
for(int i=1;i<=m;i++){
cin>>s[i].x>>s[i].y;
cnt[s[i].x]++;
cnt[s[i].y]++;//记录度
}
for(int i=1;i<=m;i++){
if(cnt[s[i].x]==2&&cnt[s[i].y]==2){
if(find(s[i].x)==find(s[i].y))//查询父节点
ans++;
else
merge(s[i].x,s[i].y);//合并
}
}
cout<<ans<<endl;
return 0;
}