Codeforces Round #479 (Div. 3) E. Cyclic Components

E. Cyclic Components

题目链接-E. Cyclic Components
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
题目大意
给你 n n n个点和 m m m条边,求所构成图中单圈环的个数

解题思路
并 查 集 并查集

  • 很明显单圈环每个点的度都为 2 2 2,所以我们可以用数组cnt[]记录每个点的度,只需要找度为 2 2 2的点即可
  • 如果一条边两个顶点的度都为 2 2 2,我们可以用并查集判断两点是否在一个子图里
  • 用并查集判断两个点父节点是否相同,如果父节点相同,就说明找到了环,ans++记录答案,否则就合并
  • 具体操作见代码

附上代码

#pragma GCC optimize("-Ofast","-funroll-all-loops")
//#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double e=exp(1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=2e5+10;
typedef long long ll;
typedef pair<int,int> PII;
typedef unsigned long long ull;
int f[N];//记录每个点的父节点
int find(int x){//查找父节点
	return f[x]==x?x:f[x]=find(f[x]);
}
void merge(int x,int y){//合并
	f[find(x)]=find(y);
}
struct edge{
	int x,y;
}s[N];//记录边
int cnt[N];
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	
	int n,m,ans=0;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
		f[i]=i; //刚开始每个点父节点都是自身
	for(int i=1;i<=m;i++){
		cin>>s[i].x>>s[i].y;
		cnt[s[i].x]++;
		cnt[s[i].y]++;//记录度
	}
	for(int i=1;i<=m;i++){
		if(cnt[s[i].x]==2&&cnt[s[i].y]==2){
			if(find(s[i].x)==find(s[i].y))//查询父节点
				ans++;
			else
				merge(s[i].x,s[i].y);//合并
		}
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值