2020牛客暑期多校训练营(第四场)B.Basic Gcd Problem

B.Basic Gcd Problem

题目链接-B.Basic Gcd Problem
在这里插入图片描述
在这里插入图片描述
题目大意
定义一个函数如下:
在这里插入图片描述
请你求出 f c ( n ) f_c(n) fc(n)的值并对 1 e 9 + 7 1e9+7 1e9+7取模

解题思路
数 论 数论

  • 首先我们知道该递归函数结束的条件是 g c d ( i , x ) = 1 gcd(i,x)=1 gcd(i,x)=1 x x x一定是一个素数,而且 x x x一定是 n n n的一个因子,所以我们可以得出最后 x x x n n n的一个质因子
  • f c ( n ) = m a x   c × f c ( g c d ( i , n ) ) = c × m a x   f c ( g c d ( i , n ) ) f_c(n)=max\ c×f_c(gcd(i,n))=c×max\ f_c(gcd(i,n)) fc(n)=max c×fc(gcd(i,n))=c×max fc(gcd(i,n)),我们要取最大值,因为 f c ( x ) f_c(x) fc(x)的最终值为 1 1 1,而 c > 1 c>1 c>1,所以我们可以得出 f c ( n ) f_c(n) fc(n)等于 c c n t c^{cnt} ccnt 形式, c n t cnt cnt为递归次数,也就说递归的次数越多,值就越大
  • 而要想让该函数递归的次数多,需要每步都最大化 g c d ( i , x ) gcd(i,x) gcd(i,x),也就是说每次 i i i就是此时 x x x的最小质因子,这样我们就可以得出函数递归的最大次数就是 n n n的所有质因子个数
  • 接下来我们就根据一边分解 n n n的质因子,一边计算即可,具体操作见代码

附上代码

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int M=1e9+7;
int main(){

	int t;
	scanf("%d",&t);
	while(t--){
		int n,c;
		ll ans=1;
		scanf("%d %d",&n,&c);
		for(int i=2;i*i<=n;i++){
			while(n%i==0){
				n/=i;
				ans=ans*c%M;
			}
		}
		if(n!=1) ans=ans*c%M;
		printf("%lld\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值