B.Basic Gcd Problem
题目链接-B.Basic Gcd Problem
题目大意
定义一个函数如下:
请你求出
f
c
(
n
)
f_c(n)
fc(n)的值并对
1
e
9
+
7
1e9+7
1e9+7取模
解题思路
数
论
数论
数论
- 首先我们知道该递归函数结束的条件是 g c d ( i , x ) = 1 gcd(i,x)=1 gcd(i,x)=1, x x x一定是一个素数,而且 x x x一定是 n n n的一个因子,所以我们可以得出最后 x x x是 n n n的一个质因子
- f c ( n ) = m a x c × f c ( g c d ( i , n ) ) = c × m a x f c ( g c d ( i , n ) ) f_c(n)=max\ c×f_c(gcd(i,n))=c×max\ f_c(gcd(i,n)) fc(n)=max c×fc(gcd(i,n))=c×max fc(gcd(i,n)),我们要取最大值,因为 f c ( x ) f_c(x) fc(x)的最终值为 1 1 1,而 c > 1 c>1 c>1,所以我们可以得出 f c ( n ) f_c(n) fc(n)等于 c c n t c^{cnt} ccnt 形式, c n t cnt cnt为递归次数,也就说递归的次数越多,值就越大
- 而要想让该函数递归的次数多,需要每步都最大化 g c d ( i , x ) gcd(i,x) gcd(i,x),也就是说每次 i i i就是此时 x x x的最小质因子,这样我们就可以得出函数递归的最大次数就是 n n n的所有质因子个数
- 接下来我们就根据一边分解 n n n的质因子,一边计算即可,具体操作见代码
附上代码
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int M=1e9+7;
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,c;
ll ans=1;
scanf("%d %d",&n,&c);
for(int i=2;i*i<=n;i++){
while(n%i==0){
n/=i;
ans=ans*c%M;
}
}
if(n!=1) ans=ans*c%M;
printf("%lld\n",ans);
}
return 0;
}