斐波那契数列

题目:写一个函数 输入n 求斐波那契数列的第n项 斐波那契数列定义如下:


 f(n)=0   n=0

f(n)=1    n=1

f(n)=f(n-1)+f(n-2) n>1



 方法一:递归


int f1(int n)
{
	if (n==0)
		return 0;
	if( n==1)
		return 1;
	return f1(n-1)+f1(n-2);
}
方法二:

采用递归的方法 从上向下计算 会产生大量的重复计算 因此可以从下向上计算 先计算f(1) f(2)然后计算f(3),然后计算f(4)。。。。

时间复杂度为O(n)


int f2(int n)
{
	int n1=0;
	int n2=1;
	int r=0;
	if(n==0) return n1;
	if(n==1) return n2;
	for(int i=1;i<n;i++)
	{
		r=n1+n2;
		n1=n2;
		n2=r;
	}
	return r;
}

方法三:


fn      =      1     1     fn-1

fn-1                  1     0     fn-2      
  
令A=[ 1 1

            1 0 ]       则 ( fn,fn-1)= A ^(n-1) (f1 ,f0)

因此 求出A^n 即可  

A^n=A^(n/2+n/2)=A^(n/2) * A^(n/2)......

A^(a+b)=A^(a)* A^(b)

n=a0*2^0+a1*2^1+a2*2^2+........+ak*2^k (n的二进制表示~ 其中ai=0或1)

A ^n=A^(a0*2^0) *A^(a1^2^1)*.....*A^(ak*2^k)

class matrix;
matrix f3(const matrix &m,int n)
{
	matrix r;
	matrix temp;
	for(;n;n>>=1)
	{
		if(n&1)
			r*=temp;
		temp*=temp;
	}
}

int F3(int n)
{
	matrix an=f3(A,n-1);//A 为求解出来的矩阵~
	return f1*an(0,0)+f0*a1(1,0);
}





                      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值