题目:写一个函数 输入n 求斐波那契数列的第n项 斐波那契数列定义如下:
f(n)=0 n=0
f(n)=1 n=1
f(n)=f(n-1)+f(n-2) n>1
方法一:递归
int f1(int n)
{
if (n==0)
return 0;
if( n==1)
return 1;
return f1(n-1)+f1(n-2);
}
方法二:
采用递归的方法 从上向下计算 会产生大量的重复计算 因此可以从下向上计算 先计算f(1) f(2)然后计算f(3),然后计算f(4)。。。。
时间复杂度为O(n)
int f2(int n)
{
int n1=0;
int n2=1;
int r=0;
if(n==0) return n1;
if(n==1) return n2;
for(int i=1;i<n;i++)
{
r=n1+n2;
n1=n2;
n2=r;
}
return r;
}
方法三:
fn = 1 1 fn-1
fn-1 1 0 fn-2 | |
1 0 ] 则 ( fn,fn-1)= A ^(n-1) (f1 ,f0)
因此 求出A^n 即可
A^n=A^(n/2+n/2)=A^(n/2) * A^(n/2)......
A^(a+b)=A^(a)* A^(b)
n=a0*2^0+a1*2^1+a2*2^2+........+ak*2^k (n的二进制表示~ 其中ai=0或1)
A ^n=A^(a0*2^0) *A^(a1^2^1)*.....*A^(ak*2^k)
class matrix;
matrix f3(const matrix &m,int n)
{
matrix r;
matrix temp;
for(;n;n>>=1)
{
if(n&1)
r*=temp;
temp*=temp;
}
}
int F3(int n)
{
matrix an=f3(A,n-1);//A 为求解出来的矩阵~
return f1*an(0,0)+f0*a1(1,0);
}