LibTorch中的tensor.index_select()方法与PyTorch中的用法类似,作用都是在指定的tensor维度dim上按照index值索引向量。先看一下在LibTorch中的声明:
inline Tensor Tensor::index_select(int64_t dim, const Tensor & index)
主要是两个参数,一个是要选择的维度,对于二维tensor来说,0代表按行索引,1代表按列索引,参数index代表索引值,这个参数要重点注意一下!首先index它本身就是一个tensor!另外,还得是int64(kLong)类型的tensor!
下面举例说明:
如果我们要获取一个[shape为(3, 2)]的二维tensor的第列维度上(dim=1)的数据(index=0,即第0列)[shape为(3, 1)]并打印,如果像下面这样写:(from_blob的作用是将数组转化为tensor)
#include "iostream"
#include "torch/script.h"
using namespace torch::indexing;
int main()
{
float a[3][2] = {1};
at::Tensor b = at::from_blob(a, {3, 2}, at::kFloat).index_select(1, at::tensor(0));
std::cout << b << std::endl;
return 0;
}
如果就这么运行,那么bug就会出现了。。。哈哈哈,先看看bug说的啥吧:
terminate called after throwing an instance of 'c10::Error'
what(): index_select(): Expected dtype int64 for index (index_select_out_cpu_ at ../aten/src/ATen/native/TensorAdvancedIndexing.cpp:387)
发现问题没?上面不是说了嘛,index它本身就是一个tensor!另外,还得是int64(kLong)类型的tensor!所以我们还要对at::tensor(0)做一下数据类型的转换,如下面这段代码就正常了:
#include "iostream"
#include "torch/script.h"
using namespace torch::indexing;
int main()
{
float a[3][2] = {{1,2},{3,4},{5,6}};
at::Tensor b = at::from_blob(a, {3, 2}, at::kFloat).index_select(1, at::tensor(0).toType(at::kLong));
std::cout << b << std::endl;
return 0;
}
/*****************运行结果*******************/
1
3
5
[ CPUFloatType{3,1} ]