LibTorch:tensor.index_select()

LibTorch中的tensor.index_select()方法与PyTorch中的用法类似,作用都是在指定的tensor维度dim上按照index值索引向量。先看一下在LibTorch中的声明:

inline Tensor Tensor::index_select(int64_t dim, const Tensor & index)

主要是两个参数,一个是要选择的维度,对于二维tensor来说,0代表按行索引,1代表按列索引,参数index代表索引值,这个参数要重点注意一下!首先index它本身就是一个tensor!另外,还得是int64(kLong)类型的tensor!

下面举例说明:

如果我们要获取一个[shape为(3, 2)]的二维tensor的第列维度上(dim=1)的数据(index=0,即第0列)[shape为(3, 1)]并打印,如果像下面这样写:(from_blob的作用是将数组转化为tensor)

#include "iostream"
#include "torch/script.h"
using namespace torch::indexing;
int main()
{
    float a[3][2] = {1};
    at::Tensor b = at::from_blob(a, {3, 2}, at::kFloat).index_select(1, at::tensor(0));
    std::cout << b << std::endl;
    return 0;
}

如果就这么运行,那么bug就会出现了。。。哈哈哈,先看看bug说的啥吧:

terminate called after throwing an instance of 'c10::Error'
  what():  index_select(): Expected dtype int64 for index (index_select_out_cpu_ at ../aten/src/ATen/native/TensorAdvancedIndexing.cpp:387)

发现问题没?上面不是说了嘛,index它本身就是一个tensor!另外,还得是int64(kLong)类型的tensor!所以我们还要对at::tensor(0)做一下数据类型的转换,如下面这段代码就正常了:

#include "iostream"
#include "torch/script.h"
using namespace torch::indexing;
int main()
{
    float a[3][2] = {{1,2},{3,4},{5,6}};
    at::Tensor b = at::from_blob(a, {3, 2}, at::kFloat).index_select(1, at::tensor(0).toType(at::kLong));
    std::cout << b << std::endl;
    return 0;
}

/*****************运行结果*******************/
 1
 3
 5
[ CPUFloatType{3,1} ]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地球被支点撬走啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值