BZOJ 2752 [HAOI2012]高速公路(road)【线段树

80 篇文章 0 订阅
14 篇文章 0 订阅

一只又水又裸的线段树 然而flaze太naive于是重写了三次【【跪着望天

前两次算法比较naive……总之就是要求一波前缀和的前缀和,于是ver1写得丑哭,连亲妈flaze都看不下去只好重写,,第二次欢快地除了样例啥都不能过,胡搞乱搞调了半天发现自己前缀和的前缀和求跪了【望天】于是开了一晚上夜车又睡了一早上终于写了ver3……不禁感慨数学大法好……

目测一下就发现每条道路对答案的贡献就是

∑w[i]*(i-L+1)(R-i+1) = ∑w[i]*(-i*i + (L+R)*i + (-R*L+R-L+1)

很明显用线段树维护三个值 s0=∑w[i], s1=∑w[i]*i, s2=∑w[i]*i*i

于是对于修改操作,改变量为q,则

s0+=q*(R-L+1);

s1+=q*(L+R)*(R-L+1)/2;

而对于s2,有一个有趣的公式【反正不是我颓出来的】(上锑度查了查表示不想看2333)

12+22+32+...+n2=n(n+1)(2n+1)/6


于是s2+=q*(R*(R+1)*(2*R+1)-(L-1)*L*(2*L-1))/6;

二话不说上代码↓【似乎代码越来越毒瘤了是错觉吧23333】【顺便因为爆int WA了一次之后就直接ctrl+F替换了所以全程long long】

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;	long long n,m;
const long long MAXN=100057;
struct t1{
	long long s0,s1,s2;
	long long tag;
	t1(long long w=0,long long e=0,long long t=0):s0(w),s1(e),s2(t),tag(0){}
}node[MAXN<<2];
t1 operator + (t1 a,t1 b){
	return t1(a.s0+b.s0,a.s1+b.s1,a.s2+b.s2);
}
t1 operator += (t1 &a,t1 b){
	return a=a+b;
}

long long gcd(long long a,long long b){
	return b?gcd(b,a%b):a;
}

void doit(long long now,long long l,long long r,long long q){
	node[now].s0+=(long long)q*(r-l+1);
	node[now].s1+=(long long)q*(l+r)*(r-l+1)/2;
	node[now].s2+=(long long)q*(r*(r+1)*(2*r+1)-(l-1)*l*(2*l-1))/6;
}

void pushdown(long long now,long long l,long long r){
	long long mid=(l+r)>>1;
	doit(now<<1,l,mid,node[now].tag);
	doit(now<<1|1,mid+1,r,node[now].tag);
	node[now<<1].tag+=node[now].tag,node[now<<1|1].tag+=node[now].tag;
	node[now].tag=0;
}

void updata(long long now){
	node[now].s0=node[now<<1].s0+node[now<<1|1].s0;
	node[now].s1=node[now<<1].s1+node[now<<1|1].s1;
	node[now].s2=node[now<<1].s2+node[now<<1|1].s2;
}

void modify(long long now,long long l,long long r,long long L,long long R,long long q){
	if(L<=l&&r<=R){
		node[now].tag+=q;
		doit(now,l,r,q);
		return ;
	}
	if(l!=r&&node[now].tag)	pushdown(now,l,r);
	long long mid=(l+r)>>1;
	if(L<=mid)	modify(now<<1,l,mid,L,R,q);
	if(mid<R)	modify(now<<1|1,mid+1,r,L,R,q);
	updata(now);
}

t1 inqry(long long now,long long l,long long r,long long L,long long R){
	if(L<=l&&r<=R)
		return node[now];
	if(l!=r&&node[now].tag)	pushdown(now,l,r);
	long long mid=(l+r)>>1;
	t1 tmp=t1(0,0,0);
	if(L<=mid)	tmp+=inqry(now<<1,l,mid,L,R);
	if(mid<R)	tmp+=inqry(now<<1|1,mid+1,r,L,R);
	return tmp;
}

int main(){
	memset(node,0,sizeof(node));
	scanf("%d%d",&n,&m),--n;
	char opt;
	long long a,b,c;
	long long k1,k2,g;
	t1 rtn;
	while(m--){
		opt='x';
		while(opt!='C'&&opt!='Q')	opt=getchar();
		if(opt=='C'){
			scanf("%lld%lld%lld",&a,&b,&c),--b;
			modify(1,1,n,a,b,c);
		}
		if(opt=='Q'){
			scanf("%lld%lld",&a,&b),--b;
			rtn=inqry(1,1,n,a,b);
			k1=(b-a+1-a*b)*rtn.s0+(b+a)*rtn.s1-rtn.s2;
			if(k1==0)	{printf("0/1\n");continue;}
			k2=(b-a+1)*(b-a+2)/2;
			g=gcd(k1,k2);
			printf("%lld/%lld\n",k1/g,k2/g);
		}
	}
	return 0;  
}



……总之水了这道题之后…………发现………………嗯线段树大法好…………要学好数学啊QuQ



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值